Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
Organic coatings are the most used method of corrosion prevention and protection of metallic substratesin many industries. Owners in both the public and private sectors will invest significant resources intotesting coating options to provide the best protection for new and existing products or infrastructure.Often, this testing defaults to some variation of accelerated salt spray testing or outdoor marine exposurewith results being based on aspects such as visual measurements of rust through, corrosioncreepage/undercutting, and blistering.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
A visual inspection of a subsea field development, transporting wet gas, containing approximately 1.5 to 2 mol% of CO2 to shore, was conducted via ROV (remotely operated vehicle). The pipeline system is largely carbon steel with only short lengths of CRA (corrosion resistant alloy) piping from the wellhead to the production/pigging manifold. Downstream of the pigging manifold the system has 20” carbon steel spools leading to the FTA (flowline termination assembly) and then 20” carbon steel flowlines to the riser platform.
There are more than 47,000 publicly-owned roadway bridges in Canada.1 Over 25% of these bridges have main structural load bearing components made of structural steel (i.e., truss and steel girder bridges) based on data from the Ministry of Transportation, Ontario – MTO.2 According to Statistics Canada, the condition of approximately 40% of these bridges is rated as either very poor (unfit for sustained service), poor (increasing potential of affecting service), or fair (requires attention).3 It was reported by Koch et al.4 that corrosion is one of the main reasons that lead to structural deficiency of steel components of highway bridges. Especially in marine environments, steel bridges are at risk of high rates of corrosion, particularly beyond 15-20 years in service.5 This observation can be expanded to locations where the use of de-icing salt is common practice such as urban areas in North America. In addition, future climatic changes that are evident (i.e., change in temperature and relative humidity) may potentially affect the rate of corrosion-induced deterioration and affect the resistance of bridges against various load types throughout their life-cycle.
Managing external corrosion, especially for underground assets, is a significant challenge dating back to the first underground pipeline in 1865. The very first issue of the journal, CORROSION, featured a headline story on this subject. This subject is fundamental for corrosion engineers and pipeline operators.
The corrosion of aircraft costs the U.S. Department of Defense billions of dollars annually and accounts for a significant portion of maintenance time and costs.1 Coatings are the most effective way to protect aircraft, but they have a finite lifetime and must be maintained or replaced before the underlying substrate is damaged by corrosion. Current aircraft maintenance practices call for coating inspections and maintenance based on elapsed time and not on measurements of coating health. Coating lifetime varies depending on the environmental stressors experienced in service, including temperature, humidity, and salt loading.
High-powered ultrasonic spot welding of metals is receiving growing interest as a prominent candidate to replace resistance spot welding, particularly of aluminum alloys, due to features such as solid-state welding, low energy consumption, short welding time, and long tool life. In this method, high-frequency ultrasonic vibrations are applied to overlapping components held under normal static force. A relative motion of very short amplitude is generated between the two surfaces, which breaks the oxide films and brings fresh metal surfaces into contact, whereupon a metallurgical bond is developed. The current study was conducted to investigate the characteristics of ultrasonic spot welding of AA6061-T6 aluminum alloy. Tensile lap shear tests were performed to evaluate the strength of joints produced with different welding parameters. Furthermore, the influence of weld energy on joint attributes was characterized through microstructure examination and micro-hardness measurement. It was possible to optimize the welding parameters to obtain joints of high strength. The results revealed that the higher the weld energy, on the one hand, promoted joint strength and on the other hand, expanded the softening area in the welded components.
The Nuclear Regulatory Commission’s (NRC’s) approach to preparing to regulate and review industry proposals for using advanced manufacturing technologies (AMTs) in commercial nuclear applications focuses on identifying differences with AMT relative to conventional manufacturing. Initial AMTs based on industry interest include laser powder bed fusion (LPBF) and laser-directed energy deposition (L-DED) additive manufacturing (AM) methods, powder metallurgy-hot isostatic pressing (PM-HIP), electron beam welding (EBW), and cold spray (CS).
The refining industry has made significant strides in technology and materials science, resulting in increased efficiency and reliability of various refinery units. Despite these advancements, unexpected failures persist, leading to costly downtime and potential safety hazards. A recent instance of premature failure in a newly commissioned Naphtha Hydrotreating unit (NHT) highlights the challenges that still exist in maintaining the integrity of critical infrastructure.
Biocides are used in hydraulic fracturing operations to control the growth of contaminant microorganisms that lead to corrosion, souring, and conductivity loss.1,2 A variety of biocides are utilized and can be classified by mechanism of action, speed of kill, and the length of residual activity.In general, rapid-acting biocides such as chlorine dioxide (ClO2) and DBNPA (2,2-dibromo-3- nitrilopropionamide) inactivate bacteria quickly but have little to no residual activity. Glutaraldehyde (Glut) reacts more slowly and provides some residual activity, particularly at lower wellbore or reservoir temperatures.