Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
Metal loss due to corrosion is a universal phenomenon in refineries which could in turn cause leakage or explosion if not well monitored. There are several units in a refinery such as crude distillation unit, hydro-processing unit, acid alkylation unit, etc. In each unit, there are hundreds of pressure vessels which have different potential damage mechanisms. Hence, it’s critical to establish an effective and efficient way to monitor thickness changing behavior.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Extensive guidelines have been published for selecting where to search for corrosion under insulation (CUI). The guidelines are based on CUI failures and near misses. Piping CUI inspection programs collect the data outlined as relevant in specific company practices.
Population growth in city centers has spurred the expansion and new construction of direct current (DC) powered transit systems throughout the world1. Despite stringent design criteria, quality assurance and quality control (QA/QC) monitored construction practices and ongoing track maintenance, it is a fact that DC stray current will eventually occur and negatively impact buried and/or submerged metallic structures immediately adjacent and within the transit right-of-way (ROW)2. In combination with other methods to reduce stray current such as high track-to-earth (TTE) resistance values and shorter distances between substations, transit agencies are specifying the welding of reinforced steel structures within their purview such as retaining walls and footings, approach slabs, aerial inverts, and bridge abutments to prevent stray current from reducing the design life of surrounding metallicstructures.
Prevention of corrosion on submerged surfaces, particularly ship’s hulls, is a challenging process. Beyond the corrosive effects of seawater, biofouling will start to accumulate, and if left unchecked, can potentially damage the coating reducing its anti-corrosive properties. In stationery applications, the biofouling may be of little immediate significance, but in the case of vessels, biofouling will greatly increase hull resistance, leading to reduced speed, greater fuel consumption and emissions, as well as enabling the transfer of alien species as the vessels travel the globe.
This paper looks at the measurement of both profile and roughness on metal surfaces prepared specifically to receive a coating system in order to protect it from corrosion. The difference between roughness and profile is discussed, whether one is more relevant than the other, and the merits of the different measurement methods for both parameters.
Splash and immersion zones on offshore installations are areas that are exposed to extremely aggressive environments due to the effects of sea water, tides, wind, waves, and/or ultraviolet radiation. Various certifications such as NORSOK(1) exist to help guide customers select a coating based on its corrosion resistance performance. Despite the necessity of these standards, it is helpful to understand that other properties such as substrate surface and cure conditions can greatly effect performance of the coatings. In this paper, we will compare adhesion of two coatings to different substrate surface conditions while both coatings will be cured in two different environments. Our goal is to investigate the effect of curing environment of coatings on adhesion to the substrate.