Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Proper design and fabrication, heat treatment and inspection practices play a vital role in achieving good quality and performance of low alloy steel piping. These materials have narrower fabrication windows as the alloy content goes up and non-adherence to correct execution practices may lead to leakage by delayed hydrogen cracking, stress corrosion cracking or fatigue resulting in unplanned shutdowns and costly repairs.This paper describes details about strengths and weaknesses of support design and fabrication practices for such attachment welds. The paper discusses various precautions to be taken during the design and fabrication stages for low alloy steel supports attachment welds. It will discuss heat treatment cycles viz. preheat, interpass, dehydrogenation treatment (post heating) and post weld heat treatment (PWHT). The control of consumables, welding environment conditions, and the weld heating cycle is essential to prevent hydrogen assisted cold cracking in high hardness microstructures in weld and HAZ, and for achieving successful relief of residual welding stresses.