Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
Various austenitic stainless steels such as UNS S30409, S31609, S32109 and 34709 are widely used in complex refinery or chemical plants at temperature ranges between 550°C and 950°C. However, Stress Relaxation Cracking (SRC) in welded joints or cold deformed parts has been a serious problem during fabrication or operation. Several researches were conducted to construct SRC test methods. This included the evaluation of SRC susceptibilities among various austenitic stainless steels and to determine SRC mechanism within TNO Science and Industry or JIP1-4. It was concluded that SRC was caused by the accommodation of strain due to both carbide/nitride precipitation hardening inhibiting dislocation movement and the formation of precipitation free zone along the M23C6 carbide at grain boundary during stress relaxation process of welding residual stresses at temperatures between 550°C and 750°C.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Japanese tap water has a low calcium hardness compared with those of countries in Europe and the Americas. There are many steep mountains and volcanos in Japan. These geological factors lead to features such as short rivers with water rich in SiO2. This leads to a lack of calcium compounds in river water because the flow rate is high and the dissolution rate of CaCO3 into water is low.
SCC in Fe- and Ni-base alloys has been observed in high temperature water, both in the laboratory tests and in BWRs. SCC results from complex interactions of ~10 primary variables and hundreds of secondary variables, broadly categorized in terms of stress, environment and microstructure.
A database of SCC growth rates in commercial austenitic stainless steels exposed to pressurized water reactor (PWR) primary water environments was developed and analyzed from international data in high temperature water, with an emphasis on deaerated or hydrogenated water while also including water containing oxygen. Crack growth rate (CGR) disposition equations were derived to reflect the effects of stress intensity factor (K), temperature, Vickers hardness (HV, to represent retained deformation), with enhancement factors for oxygen-containing, high corrosion potential conditions. The tolerance to chloride and sulfate impurities in PWR primary water was also evaluated.
Polymers have played an essential role in development of technology, applied engineering, and materials. Metallic counterparts in medical, construction, energy, water treatment, and electronic applications, are often replaced by polymers. Their characteristics such as wide range of elasticity, strength and degradability make them ideal for numerous applications.
This paper will discuss the crack growth rates measured for four different heats of HIP material and discuss possible relationships with hardness and stress intensity factor, along with considerations of grain size and features observed on the fracture surface.
This paper presents the laboratory qualification program utilized to compare four lining systems for application down to -10°C (14°F). The lining systems were applied and cured at -10 °C (14 °F). Cure of the lining systems was monitored using differential scanning calorimetry and adhesion testing, while the performance of the linings was evaluated using electrochemical impedance spectroscopy, and autoclave and standard atlas cell testing. One of the four lining systems, Product C, a 71% volume solids epoxy that contained zinc phosphate, exhibited the most potential for low temperature field implementation.
Seamless X60QOS and X65QOS line pipes are widely used for offshore and onshore Sour Service applications. Sour Service refers to the risk of hydrogen related cracking as Sulfide Stress Cracking (SSC). The International standard (NACE MR0175 / ISO 15156) provides requirements for assessing the resistance to SSC, specifically on how to qualify for use in region 3 of the environmental severity diagram (Figure 1 in paragraph 7.2.1.2 of part 2). It is requested to expose materials in an acid solution saturated by 1 bar of H2S (NACE TM0177 Solution A) and to apply a tensile stress above 80% AYS by means of different methods: uniaxial tensile, C-ring or Four-Points Bend. However, for very sour fields presenting H2S partial pressures much higher than 1 bar, the preservation of the SSC resistance might be questioned and is presently a major concern for the O&G industry.The present paper is dedicated to the evaluation of the SSC resistance of seamless quenched and tempered X65 grades, including the girth weld in the standard NACE TM0177 Solution A up to 15 bar of H2S partial pressure. Corrosion tests consisted of four-point bend tests performed in autoclave vessels. Different test configurations were investigated as specimen sampling locations through the wall thickness and surface state preparation.