Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
Corrosion Resistant Alloys (CRAs) have been widely used in oil & gas process systems since the 1980s due to their excellent resistance towards uniform corrosion in aggressive environments such as seawater and produced water containing CO2, organic acids and/or production chemicals. However, cases of localized corrosion in the form of pitting and crevice corrosion have regularly been observed. As an example, ISO(2) 21457 limits the max. operating temperature to 200C for 25 Cr super duplex stainless steel (UNS S32750/760) and 6-Mo austenittic stainless steels (UNS S31254) in chlorinated seawater systems, to avoid crevice corrosion.1
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Crevice corrosion is a geometrical-dependent type of localized attack that occurs in occluded regions where a stagnant and corrosive electrolyte is in contact with the surface of a passive metal1,2. Crevices are present in all industrial designs and can lead to major failure since their detection is often challenging3,4. Main strategies for the prevention and mitigation of crevice corrosion include design awareness and adequate materials selection5.
High-level radioactive waste generated during reprocessing of spent nuclear fuel at Hanford has been stored in several single- and 27 double shell tanks (DSTs). Each DST consists of a primary shell (inner) surrounded by secondary (outer) liner. The secondary liner rests on a concrete foundation. Rainwater may seep in and accumulate in the drain slots and may corrode the exterior of the secondary liner. Evidence of wall thinning has been detected via ultrasonic inspections of the annulus floor between the primary and secondary tank shells. Since the inspection is confined to this region, there is a concern that corrosion is widespread on the underside of the bottom plate.
Accurate representations of the thermochemistry and phase equilibria of relevant molten salt constituents and their aggregate behavior are critical to the development, design, operation, and licensing of any molten salt reactor (MSR). This need is currently being addressed by the creation of a dedicated, high quality/validated MSR thermochemical database, the Molten Salt Thermal Properties Database-Thermochemical (MSTDB-TC). MSTDB-TC is being populated with prioritized models and values for vapor species, and liquid and crystalline phases of chloride and fluoride fuel and coolant salts with relevant fission product and transuranic elements, and more recently with corrosion-relevant systems with chromium, iron, and nickel. Multi-cation crystalline and melt solution models are being incorporated, including newly developed relations as necessary, to obtain real system behavior.
F22 is a low alloy steel that typically contains 12% Carbon, 2.25% Chromium, and 1.0% Molybdenum1. This steel has been widely used in oil production systems, especially in well head design and construction. As a low alloy steel, F22 can be corroded by oilfield chemicals under certain circumstances. For example, it was observed in the Gulf of Mexico that typical scale inhibitor chemistries caused severe corrosion on F22.
An operating company was concerned that its biocide and corrosion mitigation strategy was not sufficient to control corrosion in their pigging operations across the Gulf Coast of Texas. They provided water samples from several pigging access points that were heavily contaminated with SRBs, APBs, black deposits and oil. H2S was present in most of the samples suggesting a heavy presence of SRBs. They suspected that the black deposits were most likely FeS caused by the presence of microorganisms interacting with their pipelines. Indeed, culture vial tests (sometimes referred to as “bug bottles”) proved that the samples were heavily contaminated with microorganisms.
Bridge construction utilizing post-tensioned (PT) tendon systems have become increasingly popular. 1-2 PT construction allows engineers greater options for the design of highway bridges and provides efficient structures with advantages in construction, economy, and serviceability. In bonded post stresses to the reinfotensioned systems, the introduction of rced concrete element is made through tensioned highstrength steel strand that are anchored and encapsulated in a cementitious grout within a tendon.3-4 The hardened grout allows development of the stress along the length of the tendon and also provides corrosion protection by the presence of the alkaline pore water to passivate the steel strand and by creating a barrier from external contaminants.
Mineral scales frequently occur in tanks, pipelines, cooling and heating system, production wells ofoil and gas, external and internal membrane, and other equipment during industrial processes,causing the reduction of process efficacy and millions of dollars on dealing with the scale issues. Asoil and gas are produced increasingly in more unconventional reservoirs, such as deeper and tighterzones, with new technologies, more challenges are encountered to mitigate scale problems.
One of the frequent and major problems encountered in the oil and gas production is theinternal corrosion of carbon steel pipelines. Corrosion can be categorized into uniform (orgeneral) corrosion, localized corrosion and erosion-corrosion. Uniform corrosion causesoverall metal loss and general thinning of metal. Localized corrosion has the appearanceof pits or grooves.
Several components in geothermal power plants need to be protected from the environment due to the corrosive nature of geothermal fluids used to generate the energy. Depending on the fluid properties for any location, the type of protection varies. In geothermal power plants, wear, erosion, corrosion, and scaling are all known problems1. These issues can lead to a variety of outcomes, ranging from decreased plant efficiency to upstream component failure. Failure of a component is thus a significant challenge in the geothermal industry, where materials need to operate in high temperature and high pressure environments. A major cost factor is also linked to the drilling of geothermal wells, where cost rises due to increased depth/distance of drilling, increased trip times, higher high temperature and high-pressure conditions which can lead to increased wear and corrosion of the materials. To address the issue, coatings can be considered to be a potential solution to extend the service life of downhole equipment.
Oilfield sulfide scale formation is peculiar to sour production scenarios, and for many oil and gas fields the issue of iron sulfide scale management downhole presents a major challenge. Historically iron sulfide scaling downwell have featured ‘reactive’ chemical dissolver interventions to recover well production once sulfide scale has deposited, and operators have published extensively on their experiences i.e. coiled tubing deployed dissolver technologies used in well clean-out treatments (Green, et.al. 2014, Wang et.al. 2017, Wang et.al. 2018, Buali et. al 2014).
Application of corrosion inhibitors confer many advantages for combatting internal pipeline corrosion in the upstream oil and gas industry. It is known that the associated costs for using corrosion inhibitors are low compared to other mitigation techniques [1]. For continuous injection procedures, water-soluble inhibitors are not expected to form long-lasting films, so they must be continuously injected to maintain their effectiveness. Batch inhibitors are usually higher molecular weight species and oil soluble. They tend to be more tenacious, providing a protective barrier between the water and the metal over a long period of time.