Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
In 1950s, as an important measure to improve the corrosion resistance of base metal, internal coating pipes was first applied to sour crude oil and natural gas pipelines [1]. Among the coating systems, FBE coating has good impact resistance, bending resistance, high bonding strength, good resistance for acid, alkali, salt, oil and water fluid. The coating can reduce the internal surface roughness friction resistance of piping & pipeline to reduce project investment.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
This paper shares experiences and challenges of corrosion risk assessment in the down-stream petroleum industries and simplify ways of managing corrosion through effective corrosion assessment regime.
Pipelines have been the main transportation pattern of oil and gas because of their safety and economy, which are considered as the lifeline of offshore oil and gas transportation. With the booming development of offshore oil industry, the frequency of pipeline leakage is also increasing. Corrosion is one of the important factors due to some characteristics such as operating environment, service life and transportation medium, etc., which damages the integrity of the pipeline and damage the normal operation of pipelines. Furthermore, leakage accidents caused by pipeline corrosion have occurred all over the world, accounting for 70~90% of total accidents, which has caused huge economy losses and catastrophic environmental damage.
The corrosion severity of an environment is important for both design and maintenance of infrastructure especially in marine and costal environments. Corrosion can vary drastically depending on conditions such as temperature, humidity, salt loading, and rain events.1 The interplay between these variables is quite complex so a variety of indirect techniques for quantifying corrosion severity are typically used. One common method is the determination of corrosion rate by measuring the mass loss of steel coupons exposed in the field. Measuring the change in mass of the steel coupon as a result of the corrosion product being removed from the substrate can provide the rate of corrosion after a specific exposure time in the field.
Biofuels are renewable energy resources to replace fossil fuels since the latter are depleting and their application lead to serious environmental impacts.1 Fast pyrolysis is an industrial approach to convert a larger amount of raw biomass into bio-oils in a timely fashion. However, their poor qualities, such as low thermal stability, high water and acid contents, and low heating value, make them not ready f to be as transportation fuels directly.2,3 Moreover, their high water content and acidity can introduce corrosion concern during handling, storage , transportation and upgrading.4
The high temperature and chemical composition of the geothermal fluid results in corrosion damage of drilling equipment, well casing and other components made of steel and iron alloys used in geothermal power production. This corrosive nature of the geothermal environment decreases the service life and increases the need for maintenance of geothermal power plants and geothermal wells. The main reasons for the corrosion of components are hydrogen sulfide (H2S) and carbon dioxide (CO2) present in geothermal system.
External corrosion in uninsulated pipelines is normally able to be prevented by cathodic protection (CP). Generally, external corrosion on buried pipelines cannot occur if CP current is getting onto the pipe. CP is an electrochemical means of corrosion control in which the oxidation reaction in a galvanic cell is concentrated at the anode and suppresses corrosion of the cathode (pipe) in the same cell. For instance, to make a pipeline a cathode, an anode is attached to it.
Corrosion under thermal insulations namely CUI (Corrosion under insulation) is among the key damage mechanisms which poses integrity risk to the hydrocarbon facilities. CUI is reportedly known as the reason behind 40-60% of failures in the facility piping whereas small bore piping (i.e., NPS < 4”) are even more sensitive to CUI failures, where up to 81% of reported failures in small-sized piping are known to be from CUI. Monetary spending to inspect and fix CUI-related failures cost 10% of overall maintenance budget in a typical medium-sized oil refinery. CUI risk is influenced by numerous operational and environmental factors which impedes its management in a typical AIM (Asset integrity management) program.
Petrochemical facilities and refineries consist of many miles of above ground piping that transports product between processing and storage units. These pipes are either supported at ground level or in multi-story pipe racks on varying types and sizes of supporting structures. A common problem these structures create is corrosion and erosion at the junction between the pipe and the support, which reduces the remaining wall thickness of the pipe and compromises the integrity of the entire system.
The design packages are being optimized for the construction of gas transmission lines associated with nine (9) Gas Compression Plants (GCPs) and six (6) Liquid Separation Stations (LSSs). The objective of this study was to assess the service corrosivity of all gas transmission lines associated with these GCPs and LSSs. The results of the study will assist in selecting a cost-effective and efficient corrosion management program in terms of both materials and corrosion control options. To address this objective, the study involved conducting laboratory tests simulating the conditions in these lines. Three types of corrosion attacks were investigated, namely, general corrosion, pitting corrosion, and gas phase corrosion.
Co-based alloy (30Cr-4W-Bal.Co), such as Stellite TM grade 6 (UNS No. ERCOCr-A) valve seat, is used extensively in applications where superior resistance to wear corrosion are required. But there are only rare data about crack growth behavior of the alloy in the high temperature water. It is difficult to extract specimen from as welded Stellite-6, because of the valve sheet did not have enough volume. So, to evaluate the crack growth behavior and its temperature dependence, crack growth rate measurements were performed using forged Co-based alloy bar (Stellite TM grade 6B) (UNS No. R30016) in a simulated PWR primary water at temperature ranging from 250 to 320°C using half-inch size compact tension specimens (1/2TCT).
The nickel base weld metal Alloy 82 is used in various applications in boiling water reactors (BWRs). Applications that are vital from a safety point of view are e.g., welds between core shroud support legs and the reactor pressure vessel (RPV), and feedwater nozzle to safe end welds. Laboratory testing and service history have shown that Alloy 82 is susceptible to stress corrosion cracking (SCC) in BWR environments. However, in comparison with Alloy 182, fewer failure cases have been reported, which could be related to the higher Cr content in Alloy 82 (~ 15 vs. ~ 20 %). It is also possible that the higher frequency of SCC in Alloy 182 is related to the wider use of this weld metal, and the larger surface area exposed to reactor water. Given the lower frequency of failures in Alloy 82, the database regarding SCC in BWR environments is much larger for Alloy 182.