Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
Environments in oil and gas industries are often characterized by high temperature and pressure, harsh chemicals, humidity, extreme stress cycles, radiation, and mechanical disturbances.1,2 These extreme conditions degrade the ability of materials to perform, thus requiring enhanced protection through application of heavy-duty anti-corrosive and chemical resistant coatings that can withstand the aggressive environment.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Carbon steels such as API 5L X65 are widely used oil and gas exploration, production and transportation service. However, these steels tend to corrode in the presence of wet CO2 and corrosion is more pronounced in the presence of dissolved salts and acids. Other metals, alloys and polymers also degrade in the presence of high pressure gaseous and supercritical CO2. The corrosion rate of carbon steels in some aqueous environments have been reported to be more than a few millimeters per year.9-10 The situation could be further exacerbated by H2S where cracking can be an issue for high strength steels.
Corrosion inhibitors are used to prevent pipeline corrosion in oil and gas industry. The evaluation of corrosion inhibitors is one of the most important tasks for the corrosion engineers. Corrosion of the metal is suppressed by the inhibitor adsorption on the metal surface. Active ingredients of corrosion inhibitors are, in general, surfactants. A surfactant can adsorb on the internal metal surface of piping and makes a hydrophobic film preventing the contact of water with the metal surface.
Over the years, the supercritical carbon dioxide (s−CO2) Brayton cycle has been developed as a promising working fluid to replace supercritical water (s−H2O) Rankine cycle. It could be used in various energy systems, including Generation IV nuclear reactors, concentrated solar power plants, fossil fuel thermal power plants, waster heat recovery, etc. due to its merits of high thermal efficiency, simple physical footprint, compact equipment size, high flexibility on operation, simple layout, compact turbomachinery.1
A lot of oil and gas facilities face corrosion problems because the production fluid contains some corrosive components represented by CO2. Generally, corrosion inhibitors are used in order to mitigate corrosion problems of tubing and pipeline. Imidazoline is known as one of the active ingredients of corrosion inhibitors and widely used in the oil and gas industries. However, imidazoline-type inhibitor is easily hydrolyzed to amide if water mixes into it.
In the hydrocarbon industry, internal corrosion is one of the most worrisome threats because it can cause catastrophic failures in the pipelines and cause harm to people and the environment. Some authors mention that internal corrosion damage is due to components such as H2S, CO2, mercaptans, sulfate-reducing bacteria, and suspended solids. These variables lead to thickness losses in the ducts, which contributes to the increase in the rate of deterioration.1 2 3 study reported by Askari et al, shows that the internal corrosion rate can be so high that it can consume the 3-6mm allowed for the pipeline in a year, which leads to irreparable economic losses.4
Due to the increase in world’s population and technologies, and the limited fossil fuel reserves, efforts have been taken to seek alternative energy resources, such as bioenergy that is produced from renewable biomass, to meet the increasing need for energy. The feedstocks for bioenergy production can include the waste biomass from forestry and agricultural sectors and various industries such as food processing industry and pulp and paper industry, making a profit while saving costs from waste management.
Corrosion inhibitors is commonly used to combat internal corrosion of mild steel pipelines in oil and gas production and transmission systems. Since the corrosive environment and flow conditions could vary in different fields, small scale laboratory testing is essential to determine the effectiveness of inhibitors in specific corrosive environments. To ensure the accuracy of inhibitor dosage in a small-scale lab setup, the inhibitor often needs to be pre-diluted before addition to the test electrolyte. This pre-dilution has the potential to lead to experimental errors. However, little information can be found about pre-dilution steps, and their influence on inhibition phenomena, in the open literature.
High-strength aerospace aluminum alloys, such as AA7075-T651, are susceptible to environmental assisted cracking (EAC) under the right combinations of stress, environment, and microstructure. EAC presents a serious risk to structures and equipment operated in corrosive conditions. Studies of EAC in aluminum alloys have highlighted the importance of both anodic dissolution and hydrogen embrittlement to EAC initiation and propagation.1–4 The EAC response of alloys under variable atmospheric conditions is of particular importance for assessing material performance for aerospace applications.
Large amounts of water can be produced during extraction of hydrocarbons from underground reservoirs.1 It is well understood that produced waters usually contain high amounts of dissolved salts, up to 28 wt.%.2 In addition to salts, dissolved corrosive gases (CO2 and H2S) are present in produced water, which make the mixture a complex corrosive environment for metallic parts and equipment used throughout the production process.
With the rapid development of China's economy, energy and transportation industries have developed rapidly, and more and more oil and gas pipelines and urban rail transit have been built and put into use. Urban rail transportation systems, such as subways or light rail, generally use direct current traction and backflow through the rail. Because the track is not completely insulated from the earth, it is inevitable that some electric current will be discharged from the track to the earth to form stray electric current, which will cause interference to the surrounding metal components such as buried oil and gas pipelines.
The spread of disbondment or corrosion from a scribe or holiday in a coating film, for which the terms rust creepage or undercutting are used in this paper is an important mechanism of coating degradation. The mechanism of rust creepage has been well studied by several authors who concur that the mechanism is driven by electrochemical reactions15. The reactions occurring at the discontinuity in the coating (scribe or holiday) involve an anodic reaction in which iron is dissolved. Adjacent to the anodic region, under the coating, a cathodic reaction occurs in which oxygen is reduced to hydroxyl ions.