Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
Precipitation hardened (PH) Ni-based alloys have been utilized in oil and gas industry for decades. Among them, UNS1 N07718 because of its performance in sour wellbore fluids and in hydrogen charging environments has received the most attention for multiple upstream applications such as tubing hangers, production stab, multi-phase flow meter bodies, valve stems, etc. It has been reported that the alloy performance is generally acceptable for many applications up to 175 °C (350 °F) – 204 °C (400 °F) in the exposed wellbore environments such as sour production fluid, completion brine, and depending on metallurgical processing and microstructure externally exposed to SWCP at the seabed temperature.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Precipitation-hardened nickel-based alloys have been used for decades in the oil and gas industry. Among these alloys, UNS1 N07718 has received the most attention for use in upstream applications such as tubing hangers, production stab plate, multiphase flowmeter bodies, and valve stems because of its performance in sour wellbore fluids (SWFs) and hydrogen-charging environments.
Martensitic stainless steels for OCTG materials are widely used in sweet and mild sour conditions. Environmentally-assisted cracking (EAC) is a major corrosion-related issue when using stainless steels as OCTG materials. The EAC in specific oil/gas well conditions with sour environments is defined as sulfide stress cracking (SSC) and stress corrosion cracking (SCC). The SSC is a type of cracking caused by hydrogen embrittlement, which is attributed to a cathodic reaction under acidic conditions, while SCC is associated with an anodic reaction. SSC testing for martensitic stainless steels for OCTG material is often carried out at or near ambient temperature under conditions simulating condensed water, and SCC tests are conducted at higher temperatures under conditions simulating formation water and/or the brine availability test.
EPRI has been supporting the nuclear industry over the last several decades to provide the technical bases and research to support the operation of the current fleet of nuclear power plants beyond their initial licensing period (typically 30-40 years of operation). Hundreds of technical reports and guidance documents have been issued on topics ranging from developing and implementing aging management programs, identification, and evaluation of degradation mechanisms, and remaining useful life of key passive components (e.g., reactor vessel internals, cables, and concrete). A previous 2019 ANS Environmental Degradation Conference paper discussed the research goals and results of EPRI up to 2019 for concrete and cables. These research results provide a living technical basis as these results are supplemented regularly with industry operating experience, inspection results, and condition monitoring or non-destructive evaluations.
High flow velocity can have negative impact on the integrity of the oil and gas production equipment. This negative impact can manifest by the reduction of Corrosion Inhibitor (CI) efficiency: the higher the flow velocity, the lower the CI efficiency. The negative impact can also manifest by the occurrence of liquid erosion corrosion phenomena.
PbSCC of Ni-base alloys is active over a wide range of environmental conditions but for the higher Cr content Alloys 800 and 690 only under abnormal crevice environment of high or low pH that can occur in the secondary side of Pressurized Water Nuclear Reactors (PWRs). Several experimental campaigns have aimed at understanding this phenomenon, concluding that PbSCC can develop in both acidic and caustic solutions, for low and high concentration of Pb, across a wide electrochemical potential range and in presence of chlorides contaminants.
Uncontrolled growth of microorganisms in the oil field production systems have a major negative impact on the productivity and asset integrity in oil and gas industry. Sulphate-reducing bacteria (SRB) have been found as the most troublesome group of microorganisms among all organisms involved in MIC of carbon steel and other metals used in the oil industry (Abdullah et al 2014). The formation of SRB biofilm on steel surface can affect the kinetics of anodic and cathodic reactions, leading to an acceleration of steel corrosion (Beech and Sunner, 2004: Zuo,2007). In addition to that, SRB contributes to hydrogen sulfide-driven reservoir souring, increased suspended solids, reservoir plugging, etc., in oil field sites.
This paper summarizes work performed to evaluate a phenomenon that can occur in electrical cable insulation polymers during the aging process. This phenomenon, the copper catalytic effect, occurs because of diffusion of copper ions from the conductor into the insulation polymers during the aging process. In this research, the copper catalytic effects observed in cross-linked polyethylene, cross-linked polyolefin, and ethylene propylene rubber insulation subjected to thermal accelerated aging at both 120˚C and 130 ˚C were evaluated. In addition, the insulation polymers from cables removed from service in operating nuclear power plants were also evaluated to determine if this effect is prevalent for naturally aged materials. The results acquired from this work were used to characterize the copper catalytic effects observed in these polymers, analyze how this phenomenon affects the degradation process of the materials, and determine the impact that the copper catalytic effect has on condition monitoring data acquired during the aging process.
The power plant is a natural gas-fired, combined cycle plant with three combustion turbines and a single steam turbine. A large stainless steel surface condenser is used to condense steam off of the turbine, and provide high purity steam condensate return to the boiler system. The steam condenser was put into service approximately 15 years ago. This plant takes makeup water for its open recirculating cooling tower water system from a river location that is inland from an ocean coastal area.
Corrosion of steel in reinforced concrete bridges is a major concern for the structural integrity, long-term durability, and maintenance of the highway infrastructure. Statistics from a national study in 2002 indicated that approximately 15% of the national bridge inventory is structurally deficient because of corrosion and the national annual direct cost exceeded $8 billion.1 In the state of Florida, the typical design life expectation for the >6,000 bridges in the state highway infrastructure exceed 75 years.
Cesium formate (CsFo) brines have been used as the drilling and/or completion fluids in oil and gas wells in need of high-density fluids.1,2 Multiple studies on corrosion of steels and corrosion resistance alloys (CRA) in formate environments have been reported in the literature.2-8 It was known that the formate brines could undergo significant decomposition to form hydrogen when in contact with catalytic surfaces which CRA can act as. Therefore, there have been concerns that the CRA may catalyze the decomposition of formate brines to accelerate the generation of hydrogen which in turn may embrittle certain CRAs and endanger the relevant well equipment.
The Hanford site contains approximately 55 million gallons (2.08 x 108 liters) of radioactive and chemically hazardous wastes arising from weapons production, beginning with World War II and continuing through he Cold War era. The wastes are stored in 177 carbon steel underground storage tanks, of which 149 are single-shell tanks (SSTs) and the remaining are double-shell tanks (DSTs). Historically, tank failures have been associated with the SSTs