Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
Offshore metallic structures have an average life-time of 20-25 years. They consist of four different zones, the buried, the submerged, the tidal/splash and the atmospheric one. According to NACE 2013 the global corrosion cost is estimated to be US$2.5 trillion, consisting a major economic problem. Hence, protection from corrosion is essential. Each zone is protected either with cathodic methods, or with a combination of cathodic methods and coatings. More specifically, the protection of the atmospheric zone, which is the aim of this research, due to the lack of continuous electrolyte (seawater) does not allow the application of cathodic protection.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
High pressure and high temperature processes are present in a wide variety of industries and are often pushing the limits of common materials. As a result, these applications have required advanced materials as well as an improved understanding of the in-situ conditions. Furthermore, those processes have become more and more present in a wide range of industries such as upstream oil and gas (O&G) and power generation (in supercritical CO2 or molten salt nuclear reactors). The corrosion performance of existing and emerging materials to the extreme environments present in next generation power must be well characterized to ensure material integrity and reduce the risk of catastrophic failures due to environmentally assisted cracking, homogeneous corrosion, thermal oxidation, or other mechanisms.
Wells in oil, gas and geothermal production experience a broad spectrum of operating conditions in terms of temperature, depth, pressure and production environments, which govern material selection. For severe environments, where high strength and toughness combined with excellent corrosion and cracking resistance are required, a new superaustenitic stainless steel has been recently developed. Aiming for a minimum yield strength of at least 120 ksi (827 MPa), strain hardening enables the desired mechanical properties, allowing users to avoid well known but HISC susceptible and less cost effective precipitation hardened (PH) nickel alloys.
This is Part I of a two-part series intended to provide background and a rational justification or supporting rationale for requirements leading to the development and publication of NACE(1) MR 0175 and ISO(2) 15156. Part I focuses on some of the metallurgical and processing requirements; specifically, Rockwell C 22 scale (HRC) limit, the various acceptable heat treatments and the 1wt% Ni limit for carbon and low alloy steels to minimize the threat of sulfide stress cracking (SSC) in H2S containing environments. Part II describes the testing and rationale behind the use of accelerated laboratory test procedures and their development to differentiate metallurgical behavior in sour environments.
Abrasive blasting operations used for paint and surface coatings removal are essential for the maintenance of the ships, aircraft, and land vehicles of the United States Armed Forces as well as use industries such as oil & gas, power generation, construction, mining, and infrastructure, among others. Abrasive blasting nozzle design is rudimentary and noise levels produced during abrasive blasting operations in shipyards, maintenance facilities, and factories for removing paint and surface coatings often exceed exposure limits put in place by Occupational Safety and Health Administration (OSHA). Reducing a worker's occupational noise exposure is imperative from a safety and economics perspective.
In this presentation, we will cover how digitalization impacts industrial processes, how to ensure your digitalization initiative is successful, and where to start and what to expect when implementing mobile technology and software. We will address these points using proven examples of successful digitalization related to the corrosion industry.
Sour corrosion and iron sulphide scale deposition are two common flow assurance issues encountered in oilfields. Sour oil wells typically produce crude along with produced water and a significant amount of acidic gases such as carbon dioxide and hydrogen sulfide. The high pressure and temperature conditions under the downhole tend to cause severe corrosion damage including metal loss and pitting, along with iron sulphide scale deposition. Iron sulfide deposition in sour wells is a corrosion induced scale problem. It potentially causes production decline, restricted well intervention, well shutdown, or even severe consequences towards to the abandoned wells.
TOL corrosion is reported to occur in large diameter wet gas pipeline in stratified flow conditionsdue to low fluid velocities1. With increasing distance from the inlet, the wet gas pipeline becomescooler as it loses heat to the environment. Such cooling causes water, hydrocarbon, and otherhigh vapor pressure species to condense on the pipe wall. The upper part of the pipe willconstantly be supplied with freshly condensed water while the less corrosive water saturatedwith corrosion products will be drained along the pipe wall to the bottom of the line.
Offshore oil production facilities are subject to internal corrosion, potentially leading to human and environmental risk and significant economic losses. Microbiologically influenced corrosion (MIC) and reservoir souring are important factors for corrosion-related maintenance costs in the petroleum industry.1 MIC is caused by sulfate-reducing prokaryotes (SRP), which can be Bacteria (SRB) or Archaea (SRA), with the main focus in literature being on SRB.2–5 The microorganisms most frequently reported in literature to be responsible for MIC are the SRB; Desulfovibrio, Desulfobacter, Desulfomonas, Desulfotomaculum, Desulfobacterium, Desulfobotulus, and Desulfotignum, and methanogens.2,5
In recent years, several novel technologies have been proposed and developed to produce energy in a clean and sustainable way. However, in the foreseen future, fossil fuel will still be the major source to meet our needs on energy.1 The combustion of fossil fuel for power and heat is always accompanied by CO2 emission, which is believed to be in large correlation to global warming.2 To control the CO2 emission and reduce the negative effects, carbon capture and storage (CCS) has been rapidly developed in fossil fuel combustion power plants.3, 4 One of the crucial parts of CCS is the longdistance transportation of CO2, during which a large amount of captured CO2 is transported to storage sites. Pipeline network is chosen as transportation system due to its high efficiency and moderate cost.5 And the transported CO2 streams are usually compressed into supercritical CO2 (s-CO2).6
Austenitic stainless steels (SS), such as 304L and 316L alloys, are largely used for structural components in nuclear power plants due to their good corrosion resistance, especially under high temperatures and aqueous environments. However, operational experience on the primary circuit of pressurized water reactors (PWRs) has shown an increasing number of cases of stress corrosion cracking (SCC) on austenitic stainless steels components after long-term exposure.
Structural steel, which is a critical component of many infrastructures, can suffer from deterioration of steel by reaction with air and its pollutants known as atmospheric corrosion when exposed to theenvironment. The risks associated with corrosion of newly-built and ageing infrastructure are high and their consequences costly. The recent International Measures of Prevention, Application, andEconomics of Corrosion Technologies (IMPACT) study led by NACE International (now renamed asAMPP) has shown for Canada the estimated annual corrosion cost to be $51.9 billion, which is 2.9% of Canada’s GDP.