Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
Chloride-induced stress corrosion cracking (CISCC) is a degradation phenomenon hindering structural integrity of a dry storage canister for interim storage of spent nuclear fuel. Owing to materials susceptibility, residual stress and corrosive environments, pitting corrosion and evolution of CISCC occur. Previous workers on CISCC have figured out that austenitic stainless steels is susceptible to CISCC due to its microstructural characteristics. In chloride-containing media, pits are formed at the surface of austenitic stainless steels and theses pits play a role as CISCC initiation sites. However, due to its complexity, fundamental mechanism of CISCC at various temperatures and relative humidity (RH) values is still in-debate.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
The gap between fully immersed and ultra-thin film electrochemical measurements is wide, which suggests that the two conditions are independent of one another. There is a lot of work describing experiments, results, and trends regarding completely immersed electrochemical tests. However, in corrosion tests under thin electrolyte films, the information is not so abundant. A classical three-electrode cell used in conventional electrochemical tests cannot easily be scaled for immersion in electrolytes of micron thickness.
A large diameter, 1067 mm (42 in) and 914 mm (36 in), high pressure gas mainline, and four (4) smaller diameter lateral pipelines, between 406 mm (16 in) and 610 mm (24 in), were constructed in Alberta, Canada, between 1999 and 2000. At the time of construction, the pipelines were built in proximity to several high voltage alternating current (HVAC) transmission lines. In subsequent years, additional transmission lines were built near the pipeline system, bringing the total number of lines with significant proximity to eight (8).
Ceramic coatings technologies are an effective surface engineering tool in the management of heat flux on metal surfaces. Thin ceramic coatings can be employed to either increase or decrease heat transfer on metal surfaces by modulation of emissivity. While this characteristic is relatively easily impressed on a surface, long term coating sustainability and oxidation protection of the underlying metal is not readily achieved. This presentation provides a technical data-based introduction to the function, performance, testing, and installation of ceramic coatings on two key pieces of refining equipment.• Process heaters are critical production assets for the downstream hydrocarbon processing industries such as refineries and petrochemical plants. The efficient operation of these units is vital to plant productivity since they consume large amounts of energy to provide the required heat for the process. They may also bottleneck feed throughout due to heat transfer limits. Scaling and hot spots in the radiant tube section can cause local coking and premature material failure. Improvements in operating efficiency and reliability can yield significant cost benefits and a fast return on investment. Additionally, radiant transfer properties of existing refractory systems can be improved, increasing process efficiencies. Know ceramic performance metrics can be used to predictively model performance improvement. • Flare tips routinely suffer from material overheat, creep and oxidation. Ceramic systems are employed to mitigate these, through the installation of both low emissivity and low conductive heat transfer materials. This paper and case study discusses how different ceramic systems can be used in the management of heat transfer, the protection of surfaces from corrosion, and provide insight into the less intuitive mode by which heat transfer can be promoted.
Electroplating is a coating technique used to apply a metallic deposit to alter the properties of the substrate surface. Traditional electroplating involves submerging a part into a tank of electrolyte plating solution and passing a current between the part and an anode, any area that should not be plated must be masked off. Brush electroplating is a portable method of electroplating localized areas without the use of an immersion tank.
Corrosion Under Insulation (CUI) is widely acknowledged to be a critical issue facing plant operators in the oil, gas and chemical industries. CUI studies from a petrochemical facility have shown that 40-60% of pipe maintenance costs are due to CUI and approximately 10% of the total maintenance budget is spent repairing damage from CUI, mainly on pipes. The risk of corrosion under insulation is considered high in the temperature range 50 – 175°C (122 – 347°F) and extreme when in cyclic temperature service between -20 and 320°C (-4 – 608°F).
Organic corrosion inhibitors (CIs) are widely employed in the oil and gas industry to protect carbon steel pipelines against internal corrosion. The high inhibition efficiency of organic CIs at extremely low concentration can be attributed to their amphiphilic molecular structures. This structure enables the formation of self-assembled films that act against corrosion via the adsorption of their hydrophilic head group on the steel substrate and the repellence of aqueous corrosive species by their hydrophobic tail. Consequently, any factors affecting the film formation of organic CIs could lead to changes in inhibition behaviors.
Precipitation hardenable nickel alloys N09925, N07718, N09945, N09946 and N07725 provide high strength and excellent sour service corrosion resistance for critical downhole oilfield applications. This family of alloys achieves yield strength minimums ranging from 120 to 160 KSI (827-1103 MPa) and can withstand high temperatures and partial pressures of H2S. The primary strengthening mechanism is the formation of γ’ and γ” nanometer sized particles during an age hardening heat treatment.
Root cause analysis involves a detailed process of evidence collection, investigation of the evidence, subsequent analysis, and identification of corrective actions based on conclusions drawn from the evidence. The process when diagrammed out seems simple, however paramount to the process is identifying the problem or failure accurately. Misunderstanding the failure leads to misidentification of the root cause which in turn begets mitigation efforts that may or may not impactfully remediate the original failure.