Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.

During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.

Search
Filters
Close

Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!

Online Conference Paper

View as
Sort by
Display per page
Picture for The Development of Novel Corrosion Inhibitors for High Temperature Sour Gas Environments
Available for download

The Development of Novel Corrosion Inhibitors for High Temperature Sour Gas Environments

Product Number: 51320-14591-SG
Author: Jody Hoshowski, Paul Barnes, Rolando Perez Pineiro, Alyn Jenkins, Tore Nordvik
Publication Date: 2020
$20.00
Picture for The Development of Novel Laboratory Test Method for Scale Inhibitor Evaluation in the Presence of Ferrous Iron
Available for download

The Development of Novel Laboratory Test Method for Scale Inhibitor Evaluation in the Presence of Ferrous Iron

Product Number: 51320-14443-SG
Author: Haiping Lu, Zhenning Gu, Johnathon Brooks, Gina Beans, Stephen Heath, Daniel Bestgen, Dong Lee, Joe Penkala
Publication Date: 2020
$20.00

Ferrous iron is typically present in the brines of oil and gas production. Soluble iron is considered to adversely affect the performance of scale inhibitors against calcium carbonate scale. However, it is particularly difficult to prevent the oxidation of ferrous iron to form ferric iron with even trace amounts of oxygen in laboratory testing conditions. The oxide species of ferric iron have less solubility than the ferrous iron, and ferric hydroxide may adsorb scale inhibitors on its surface. Therefore, the presence of ferrous iron in laboratory testing poses a challenge for evaluating its effect on scale inhibitor performance.  Recently, Kinetic Turbidity Test (KTT) has become a more recognized testing method for scale inhibitor evaluation. It is a novel laboratory test method using an Ultraviolet-Visible (UV-Vis) spectrophotometer to monitor the formation of scales at various dosages of tested products as a function of reaction time. In the presence of ferrous iron, in order to keep oxygen away from the ambient environment during the test, the instrument was placed into an anaerobic chamber for maintaining low level of oxygen environment (< 1 ppm O2 in the chamber) during the testing process. This paper presents the approach to conduct KTT in the present of ferrous iron, and compares the testing data with and without ferrous irons on scale inhibitor performance by KTT and anaerobic bottle testing for both calcite and calcium sulfate inhibition. The selected inhibitor chemistries include four different types of phosphonates (Phosphonate A, B, C, and D) and five polymer inhibitors (Polymer A, B, C, D, E). Results show that KTT provides an efficient and data-driven approach for evaluating scale inhibitor performance in the presence of ferrous iron. The mechanisms of scale formation and scale inhibitor performance under the effects of iron were discussed. This paper provides insight for scale treatment chemistry and dosage in the presence of iron. 

Picture for The Development of Novel Laboratory Test Method on Evaluation of Scale Inhibition and Dispersancy for Cooling Water Applications
Available for download

The Development of Novel Laboratory Test Method on Evaluation of Scale Inhibition and Dispersancy for Cooling Water Applications

Product Number: 51320-14491-SG
Author: Haiping Lu, Tim Underwood, Zhenning Gu, Bingbing Gu
Publication Date: 2020
$20.00

Scale control is vital for cooling water operations, and evaluation of best-fit scale inhibitors for the application is essential, for the scale treatment. One of the traditional test methods for industrial water scale inhibitor screening is static bottle testing. Recently, in other industries, Kinetic Turbidity Test (KTT) has gained more acceptance for scale inhibitor evaluation. KTT uses an Ultraviolet-Visible (UV-Vis) spectrophotometer to monitor scale formation at various dosages of tested products, as function of reaction time. The technology can provide minimum dosage recommendations for the treatment with selected inhibitors, and give the insight on scale formation kinetics and mechanism, under the effects of different types of scale inhibitors.  

Polymer dispersancy in waters with particulates such as iron oxide and clay, is also an important characteristic to evaluate, in systems with high levels of suspended solids or fine particles. Previously(currently), this testing was conducted in bottles where the turbidity of solutions were measured by pipette transfer to a cuvette and turbidity meter, providing one data point at a certain time. Kinetic turbidity testing can continuously and simultaneously monitor and record turbidity changes with time, under the effects of various polymer dispersants and dosages. This capability provides more thorough and objective data, for scale control product evaluation.
This paper presents the approach to evaluate scale control chemistries for industrial applications by KTT, and compares the KTT test data, with bottle test results. The laboratory testing results show that KTT provides a fast and data-driven approach for evaluating performance of scale inhibitors and dispersants.