Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
A decarbonized energy system is underway worldwide. The Paris Agreement goal is to keep global warming “below 2 degrees Celsius above preindustrial levels, and to pursue effort to limit the temperature increase even further to 1.5 degrees Celsius.” To achieve this long-term temperature goal, big changes are needed in the ways energy is produced, distributed and storage.
With the increased pollution and energy demand, industries are shifting towards cleaner and greener power generation source. Geothermal energy, where energy is derived from the sub-surface of earth, is an excellent and continuous source of energy. Despite having the potential of providing cleaner energy, there is a huge gap between the theoretical potential of geothermal power plants and their practical applications. Some of the major reasons are high power generation cost and poor efficiency of the plant.
Zinc rich primers, both organic and in-organic coatings, are extensively used in the marine and offshore industry. The beneficial effect of zinc-rich primer on the longevity of protective coatings is primarily assumed to be due to a cathodic protection mechanism. During the 60’s and the 70’s zinc rich epoxy primers dominated the market.
Controlling corrosion of steel is expensive. The direct costs of corrosion maintenance are estimated to be over 3% of GDP every year.1 Metallic zinc coatings provide very effective corrosion protection for steel by acting first as a barrier coating, keeping corrosive elements away from the steel, and secondly as a sacrificial anode.2 Should the zinc coating be compromised, accidentally by a scratch or on purpose with a drilled hole, the zinc will provide anodic protection to the exposed steel. Metallic zinc coatings can be pure zinc or zinc-based alloys and will be referred to generically as zinc coatings in the paper. Zinc coatings can be efficiently applied by thermal spraying, which involves projecting particles of semi-molten zinc onto the surface of the steel using compressed air. With thermal sprayed zinc (TSZ) coatings, there is no size limitation to the part to be coated, and the technology is fully portable, allowing easy field applications.