Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
With the increasing global energy demand, the transportation volume of natural gas increases rapidly, and pipeline transportation has become the most commonly used transportation mode of natural gas. Hydrogen is produced as a byproduct of ethylene production from ethane. Hydrogen is flammable and explosive. If it is directly discharged into the atmosphere, there are some safety risks. As a kind of efficient and clean secondary energy, hydrogen can not only avoid energy waste, but also increase economic benefit if it is mixed into natural gas pipeline.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Zinc and its alloys are used as sacrificial anodes because zinc is an active metal. Carbon steel can be coated with zinc to protect against corrosion. These metals are known as galvanized steel. In this work, microbiologically influenced corrosion (MIC) of pure zinc and galvanized steel caused by a sulfate reducing bacterium was investigated. After 7 days of incubation in 125 mL anaerobic vials with 100 mL culture medium and 1 mL inoculum, the sessile cell count on the galvanized steel was slightly higher than that on pure zinc. The abiotic weight loss for pure zinc was 1.4 ± 0.1 mg/cm2 vs. 4.6 ± 0.1 mg/cm2 for galvanized steel after 7 days of anaerobic incubation at 37oC. The weight losses for galvanized steel and pure zinc were 31.5 ± 2.5 mg/cm2 and 35.4 ± 4.5 mg/cm2, respectively, which were 10X larger than the previously reported carbon steel weight loss in the same SRB broth. Electrochemical corrosion tests confirmed the severe corrosion of these two metals. The corrosion current densities of galvanized and pure zinc were 25.5 µA/cm2 and 100 µA/cm2, respectvely at the end of the 7-day incubation with SRB, confirming that pure zinc was more prone to SRB MIC than galvanized steel. In both cases, the corrosion product was mainly ZnS. Three MIC mechanisms were possible for the severe corrosion. Extracellular electron transfer MIC is thermodynamically favorable for Zn. Furthermore, the detection of H2 evolution in the vials suggest that proton attack and H2S attack occurred against Zn in the SRB broth with neutral pH after passive film damage by the SRB biofilm.
In Oil Sands In-Situ operation bitumen is often extracted from underground oil sands deposits through SAGD (Steam Assisted Gravity Drainage) technology. This method involves forcing steam into sub-surface oil sands deposits, usually those at depth greater than 150m (492 ft), to heat the bitumen locked in the sand, allowing it to flow well enough to be extracted [1]. This process technology makes it possible to access the underground deposits otherwise difficult to access through the open mine method. It is particularly relevant in Canada because it is the most common method of in situ extraction used in the oil sands.
Extending service life of an asset brings value to the owner and has the added benefit of reducing environmental impact. Arguably the biggest threat to service- life is degradation. When constructing with steel, corrosion is the threat to mitigate. Zinc dust incorporated into silicate resins have offered corrosion protection for heavy duty coating applications since the latter half of the last century. In recent years silicate finishes formulated without zinc have entered the market to create a two- coat system offering superior corrosion protection in a finish with various color options. The silicate finish or topcoat is low carbon and resilient to UV degradation allowing it to protect the zinc- rich primer from damage. For applications where a lower gloss finish is desired or appropriate, this technology offers decades long durability sustainably. This paper will explain what a two- coat silicate resin- based coating system is, how it works, what it looks like and most importantly how it reduces environmental impact through increasing service life of assets.Protective coatings, Corrosion control, Degradation, Durability, Coating lifecycle
Carbon dioxide (CO2) saturated brines containing high levels of calcium are commonly encountered across the energy sector: from hydrocarbon recovery to the harvesting of geothermal energy and re-deposition of CO2 for permanent storage. These brines originate in deep underground reservoirs at elevated pressures and temperatures. Despite susceptibility to corrosive attack under these conditions, carbon steels are the preferred choice of pipeline materials for such processes, attributable to their low cost, availability and ease of manufacture.
TSA is mainly used to protect offshore steel structures, including atmospheric, splash and immersed zones. During installation or in service, the coating is likely to be damaged due to erosion, wear, scratch etc. TSA coatings protect by acting as a barrier and offering cathodic protection even if the substrate is exposed to seawater.
In this paper focus will be placed on the non-oxidative and non-regenerative H2S scavenger MEA Triazine and its application in contact tower systems, specifically looking at solids (polymeric dithiazine) formation.