Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
The use of Duplex Stainless Steels (DSS) in refinery sour environments is governed by ANSI/NACE MR0103/ISO 17945NACE “Metallic materials resistant to sulfide stress cracking in corrosive petroleum refining environments” which limits DSS base materials to be used in Hydrogen Sulfide (H2S) services to a maximum hardness of 28 HRC for materials with a PREN ≤ 40 and to a maximum hardness of 32 HRC for those materials with PREN > 40.1 These hardness values are in line with the hardness requirements of solution annealed as produced straight tubes, but when the heat exchanger design requires the use of integral finning or u-bend tubes, these are subject to significant work hardening that results in as bent and as finned heat exchanger tubes with hardness measurement as high as 418 HV0.5 or 35.6 HRC which clearly exceeds the allowable limits stated above.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Oilfield waters have a complex composition depending on reservoir rock at different geographical locations that can be carried into the production water1. The alteration in environmental conditions such as pressure, temperature, salt content or pH can cause the liquid to oversaturate and the contained ions to form complexes. These will precipitate out of the solution, deposit and grow on contacting surfaces such as reservoirs, upstream production tubing, sub-surface safety valves, water injection lines to top side refining equipment namely heat exchangers and transport lines 2–4. Scaling can also be induced by incompatible mixing of fluids. For example CaCO3 and /or BaSO4 form through typical mixing of SO4 2- containing sea water with the formation water that carries high concentrations of divalent cations such as Ca2+and Ba2+2. Similarly, sulfide scales form upon mixing with H2S-containing formation water enriched with Fe, Zn or Pb ions 5. ZnS and PbS have been observed to form in presence of only 25 ppm H2S at gulf of Mexico containing 50 ppm Zn and 5 ppm Pb , due to their low solubility constant Ksp 6,7.
13Cr-5Ni-2Mo type Super Martensitic stainless steels referred to as SMSS-13Cr type grades can provide good general corrosion resistance such as in high CO2 environments combined with higher strengths and excellent toughness2 making them a prospective material choice for long term downhole completion equipment depending on actual well conditions. One of the main limiting factors for the use of SMSS-13Cr type grades is the Sulfide Stress Cracking (SSC) resistance in presence of H2S in downhole well conditions. Therefore, a good understanding of this behavior is essential to facilitate the material selection process.
A major significant change in fabrication/ welding of process piping was brought out by ASME B31.3 2014 addition Table 331.1.3 “Exemptions to Mandatory Postweld Heat Treatment” It now allowed for all carbon steel conforming to P- No1material group for all control Thickness and All weld type with exemption from Postweld heat treatment if a preheat of 95°C (200°F) is applied prior to welding on any nominal material thickness >25mm (1in). Similar exemptions are provided for P-No.3, P-No 4 group 1, and P-No. Group1. These exemptions required a closer scrutiny prior to adaptation. The review is an attempt to make end users aware of its significance.
In late 2021, several leaks were observed inside the waste heat boiler coil of the steam reformer furnace at the refinery. The leaks were located in the first row of tubes of the hot bank in the vertically-oriented coil, where boiler water inside the tubes is heated via waste heat of the reformer stack. The waste heat boiler coil has a design duty of 69.59 MMBtu/hr (~20.4 MW), with design pressures and temperatures of 1010 psig (6.9 MPa) and 700°F (371°C), respectively.
The high demand for green hydrogen energy during recent decades has caused increasing research activities around energy conversion devices. Different types of water electrolyzers (WE) and fuel cells (FC) are at the core of attention for hydrogen production and electrical energy generation from hydrogen. Around 20-22% of the total cost of a WE/FC stack is the cost of bipolar plates (BPPs) materials and coatings.
Corrosion under Insulation (CUI) costs industry millions of dollars. Water ingress into conventional insulation systems can result in accelerated corrosion of the steel substrate w hich, if unchecked, will result in structural failure of the vessel or pipe. If the structure is operating under high pressure then this failure would be catastrophic. CUI can result in significant loss of revenue from downtime, maintenance and replacement of corroded structures.
Recent occurrences of high visibility structural failures have spurred interest to revisit inspection and repair of aging reinforced concrete structures. Chloride-induced corrosion can cause premature damage of structures in coastal regions. Corrosion induced by carbonation of the concrete and the concrete pore water, on the other hand can occur in many other environments including structures in both wet and dry exposures. This type of corrosion can become increasingly relevant in residential buildings as housing structures age to where sufficient carbonation occurs at reinforcing steel depths.
The Hanford Nuclear Reservation contains radioactive and chemically hazardous wastes arising mostly from weapons production, beginning with World War II and continuing through the Cold War. The wastes are stored in 177 carbon steel underground storage tanks, of which 149 are single-shell tanks (SSTs) and the remaining are double-shell tanks (DSTs). The U.S. Department of Energy, Office of River Protection is responsible for retrieving the tank wastes, treating them in order to encapsulate them in glass logs, and then permanently closing the tanks and associated facilities.
Fouling of equipment surfaces by siliceous salts such as silica, metal silicates,coprecipitated silica with mineral salts such as calcium carbonate, calcium sulfate, etc.,is a serious challenge facing the technologists in the efficient operation of industrialsystems. Severe fouling at times results in premature expensive equipment replacement,early shutdown, increase in operating pressure of pumps, and enhance the probability ofcorrosion damage. In many cases, the removal of foulants leads to discontinuousoperation of the system, resulting in higher operating costs. In geothermal applications,siliceous scale typically occurs when brine is cooled in the course of brine handling andenergy extraction.