Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.

During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.

Search
Filters
Close

Resistance of U-bend and Integral Finned Duplex Stainless Steel UNS-S32205 and UNS-S32750 to Sulfide Stress Corrosion Cracking

The use of Duplex Stainless Steels (DSS) in refinery sour environments is governed by ANSI/NACE MR0103/ISO 17945NACE “Metallic materials resistant to sulfide stress cracking in corrosive petroleum refining environments” which limits DSS base materials to be used in Hydrogen Sulfide (H2S) services to a maximum hardness of 28 HRC for materials with a PREN ≤ 40 and to a maximum hardness of 32 HRC for those materials with PREN > 40.1 These hardness values are in line with the hardness requirements of solution annealed as produced straight tubes, but when the heat exchanger design requires the use of integral finning or u-bend tubes, these are subject to significant work hardening that results in as bent and as finned heat exchanger tubes with hardness measurement as high as 418 HV0.5 or 35.6 HRC which clearly exceeds the allowable limits stated above. 

Product Number: 51322-18038-SG
Author: Karen Picker, Luiza Esteves, Yong-Joo Kim
Publication Date: 2022
$0.00
$20.00
$20.00

Strain calculations, pitting resistance, and chloride stress corrosion cracking testing are currently used as the key indicators to delimit the minimum bend radius for 22% chrome duplex stainless steels without heat treatment to be 3.3 times the tube diameter for u-bend heat exchanger tubing. However, existing data does not address the limitations of this alloy, in the as cold worked condition, for sour services in the refining industry. This study evaluates the sulfide stress corrosion cracking resistance of as-bent and integrally finned 22% Cr duplex stainless steel UNS-S32205 tubing for refinery sour services by presenting hardness data and corrosion testing per ASTM G48 and NACE TM0177 of tight u-bend specimens with bend radius up to 1.5 times the tube diameter as well as integrally finned tubes. As a follow up from a previous study, the corrosion resistance of as finned 25% Cr super duplex stainless steel will also be presented.

Strain calculations, pitting resistance, and chloride stress corrosion cracking testing are currently used as the key indicators to delimit the minimum bend radius for 22% chrome duplex stainless steels without heat treatment to be 3.3 times the tube diameter for u-bend heat exchanger tubing. However, existing data does not address the limitations of this alloy, in the as cold worked condition, for sour services in the refining industry. This study evaluates the sulfide stress corrosion cracking resistance of as-bent and integrally finned 22% Cr duplex stainless steel UNS-S32205 tubing for refinery sour services by presenting hardness data and corrosion testing per ASTM G48 and NACE TM0177 of tight u-bend specimens with bend radius up to 1.5 times the tube diameter as well as integrally finned tubes. As a follow up from a previous study, the corrosion resistance of as finned 25% Cr super duplex stainless steel will also be presented.

Also Purchased
Picture for 07494 Effect of Plastic Deformation on Hydrogen Induced Cracking (HISC) in Duplex Stainless Steel
Available for download

07494 Effect of Plastic Deformation on Hydrogen Induced Cracking (HISC) in Duplex Stainless Steel

Product Number: 51300-07494-SG
ISBN: 07494 2007 CP
Author: Espen Heier, Bjorn Andreas Hugaas, and Odd Haukas-Eide
Publication Date: 2007
$20.00