Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
Alloy K-500 (UNS N05500) is concomitantly a centurial material and the very first precipitation-strengthened nickel-based alloy, then developed in the 1920s by the newly-formed International Nickel Company, or Inco. Derived from Monel 400 (UNS N04400) that was invented in 1901, Alloy K-500 shares many of the same corrosion and tribological characteristics. Being a pioneer alloy with so-called “stain-less” characteristics, AlloyK-500 also established itself as the first high-strength oilfield nickel alloy, having survived sour service conditions exceeding the capabilities of the low-alloy steels of the time. From early naval propeller shaft applications togeneral cross-industrial uses, Alloy K-500 has always been considered a corrosion-resistant alloy, or CRA. For instance, it has been included in the NACE MR1075 document right from the first 1975 edition.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Reviewing literature related to corrosion research brings to light the importance of understanding the mechanisms involved, and how this is essential to aid in development of mathematical models for corrosion prediction. The current research documents possible mechanisms for the dissolution of pure iron in strong acid in a potential range in the potential range of ±50 mV vs. OCP, providing explanations for corrosion engineers and researchers working with mild steel. Prediction of corrosion rate relies on the precise understanding of the anodic and cathodic processes at the metal surface in the potential range close to the OCP.
As the petroleum and energy industries relentlessly push boundaries to achieve operational efficiency and sustainability, the materials they utilize come under increasing analysis. Historically dominated by metallic components, downhole applications are witnessing a transformative shift towards non-metallic composite material such as Glass Reinforced Epoxy (GRE) tubulars. These non-metallic solutions guarantees enhanced durability, cost-effectiveness, and resistance to the corrosive environment.
Army Regulation (AR) 11-42, Army Corrosion Prevention and Control Program, requires that program managers and engineers use a risk-based approach (RBA) to identify the corrosion susceptibility on critical components and the consequence to the overall system. Department of the Army Pamphlet (DA PAM) 11-42 provides an example of generic procedures for conducting a risk-based approach. The goal of this project was to develop a detailed, standardized process for conducting a risk-based approach during CPC planning.
This paper will identify the potential causes of pipe coating failure, from the design angles to the soil types, to the fracture methods of rocks, and pull forces. It will present a logical method for evaluating the condition of an HDD pull prior to its installation so that the right level of coating protection may be applied. The pipelines that carry our world's energy and industrial networks are a vital lifeblood of our society. HDD’s play such an integral part in keeping all aspects of the pipeline and its construction running smoothly, the aim here it to ensure there are no hiccups along the way.
Risk-based inspection is a business process and improvement tool to enhance asset performance as well as asset life. This paper intends to discuss risk-based coating inspection parameters to enhance coating/lining life and prevent and or mitigate the corrosion threat to assets. This paper further discusses each key aspect of protective coating/lining inspection parameters and its intended purpose.
Cooling water systems are commonly used to cool a process, either steam, gas or liquid, through heat exchangers or condensers in various plants. The heat exchangers or condensers can be corroded easily or have scale and biofilm growth due to the poor water treatment program. The corrosion, scale, and biofilm growth on heat exchangers can lead to significant reduction in heat exchanger efficiency and lifetime. The repair expense or loss of production often costs plants a few hundred thousand or millions of dollars per day for heavy industries, such as chemical and power plants, refineries, and steel mills. Thus, cooling water treatment is critical to maintain the integrity and efficiency of heat exchangers.
Top of line corrosion (TLC) is a specific corrosion mechanism observed in the oil and gas industry. This phenomena occurs under stratified or wet-gas flow regimes when the upper internal pipeline walls are sufficiently cooled (by heat transfer to the surrounding outer environment), promoting local condensation of water vapor. Carbon dioxide (CO2) and organic acids dissolving into the condensed water generate a change in the solution chemistry, ultimately influencing the corrosion kinetics of the contacting carbon steel.
Irradiation assisted stress corrosion cracking (IASCC) continues to be a major concern for thestructural integrity of core internals in both pressurized water reactors (PWRs) and boiling waterreactor (BWRs). While factors such as stress, an irradiated microstructure and a high temperaturewater environment are required for IASCC, a better understanding of the underlying mechanismhas become a subject of intense long-term research. In the last two decades, much progress hasbeen made in understanding IASCC susceptibility, though a clear cause-and-effect has yet to beestablished on the mechanism of intergranular cracking in highly neutron irradiated stainless steelsin the PWR environment.
Stress corrosion crack (SCC) initiation testing has been performed on a 15% cold-worked UNS N06600 (Alloy 600) heat in mill-annealed (MA), solution annealed (SA), and thermally treated (TT) conditions to assess the role of grain boundary (GB) carbides on stress-assisted intergranular attack (IGA) and short crack nucleation and growth. The SCC initiation tests were conducted at a constant load equivalent to the materials’ yield stress in 360oC simulated pressurized water reactor primary water. Results revealed the highest SCC initiation susceptibility occurred in the Alloy 600 MA material, followed by the TT and SA materials, suggesting that GB carbide distribution did not have a controlling effect on SCC initiation resistance. Quantitative assessments of IGA and short cracks were conducted to help understand this phenomenon, and the role of GB carbides in precursor damage development that leads to differences in macroscopic SCC initiation behavior are discussed.
Conducting a materials failure analysis requires a carefully planned series of steps intended toarrive at the cause of the problem. Consistent with the current trend towards better accountabilityand responsibility, failure analysis purpose has been extended in deciding which party may beliable for losses, be they loss of production, property damage, injury, or fatality [1]. Hence itincreases the importance of proper implementation of characterization tools in failure analysis torightly identify the failure mode.Present work discusses a few case studies to shed light upon the importance of the metallurgicalcharacterization tools and techniques in identification of correct failure mode. Some typical casestudies where metallography plays a very important role have been discussed, such as improperwelding joints which led to premature failure, sensitization and stress corrosion cracking in S.S.,improper heat treatment and forging indicated the microstructures which led to the prematurefailure. These cases are examples of only a few laboratory based investigations which justify thatwithout metallography it is not possible to diagnose the causes of premature failures.Generally, examination of failed components commence with the low-power stereomicroscopewhereas hand-held magnifying lenses are still in wide use by experts to study fractures mostlylimited now for field purpose [2]. Metallographic examination typically is performed after nondestructiveand macroscopic examination procedures while using the light optical microscopywhich helps to assess the failure mode with respect to material defects, shortcomings inprocessing, metallurgical changes etc. Since light optical microscopy has limited value for directobservation of fracture surfaces (more limited for metals than non-metals), with still more factualinformation can be gathered by scanning electron microscopy at higher magnification.