Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Mildew growth on commodity storage tanks is not a new issue within the industry and has been seen for years. However, ethanol storage tanks pose an interesting dilemma as the mildew growth on these tanks are especially aggressive and can completely deface the tanks again within months after being cleaned off. Historical knowledge of this mildew growth can be found when looking at distilleries.
Industries such as oil and gas, marine, cleaning and protective coatings face many changes and challenges from environmental, safety and other regulatory agencies. Most of these changes have to do with containment regulations and minimizing dust in open air blast environments. With these regulations now in place, contractors are looking for alternatives to traditional dry blasting.
This paper discusses how to determine the “safe” separation distance that is required for transmission powerline tower and an adjacent pipeline to avoid an arc from the former to the latter - based on research literature and standards. Mitigation.
MIC is a major threat to oil pipelines because it reduces the service life of pipelines and can potentially leads to catatrophes. Microbial communities commonly associated with pipeline corrosion include sulfate reducing bacteria (SRB), acid producing bacteria (APB), acetogenic bacteria and methanogens. In a field environment, SRB, APB and other microbes often live in a synergistic biofilm consortium. Sessile SRB are often the main culprit of MIC. They can utilize sulfate as the terminal electron acceptor and various carbon sources and elemental iron as electron donors. Corrosive APB biofilms are also a contributing factor in an acidic environment because they release H+ which is an oxidant.
The use of High-Velocity Thermal Spray (HVTS) technology has been well adopted for sour conditions; particularly where low, or locally low, pH conditions result in corrosion and shell thinning. High alloy systems resistant to low pH or acidic conditions are effective at providing a metallurgical barrier, protecting the underlying substrate from material loss. Moreover, HVTS processes have also been employed for mitigating environmentally induced cracking (EIC) in sour service. This paper discusses the suitability and performance of modified HVTS alloys for service where high pH general corrosion or caustic cracking (CSCC) may occur. Extensive testing has been undertaken in both ambient and high pressure and temperature autoclave conditions to better understand material performance in caustic environments. While Nickel Alloy 200 and Monel 400 may be deemed appropriate based on traditional material selections, thermal spray process considerations in the material deposition and the impact of ancillary elements in the process stream, such as halides, render these alloys unsuitable. More complex Nickel alloy cladding systems are evaluated in this study with suitable material recommendations for remediation without the deleterious heat impact of welding or to protect surfaces where heat affected zones have been created and post weld heat treatment is problematic.
Common materials employed in catalytic reforming unit tubes are typically resistant to carburization due to protective chromium oxide films, but under low excess oxygen conditions can become compromised and allow carbon penetration and carbide formation at the exposed surface. Embrittlement and material wastage as a result of these mechanisms causes premature failures, with production loss, in addition to shutdown maintenance and replacement costs. Carburization in this environment is simulated in this paper through a pack carburizing method designed to create an environment optimal for diffusing carbon in an ASTM 335 9Cr-1Mo tube material.
Production of highly sour oil and gas fields has increased recently, which introduces new challenges forcorrosion control. In recent years, some unexpected and unexplained pipeline failures have occurred,resulting in complex investigations and laboratory corrosion performance testing studies to assess theinhibitors that are applied in these environments. While some of these failures are due to cracking insour environments which are prevented by alternative material selection or different operation pipelinemaintenance, we were specifically looking at cases where chemical inhibitors could be used to mitigatecorrosion.