Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
The Double Cantilever Beam test method in ANSI NACE TM0177 is increasingly applied as a QA test. In this analysis, influence of various side-groove root configurations (considered to change the stress concentration) on KISSC and Finite Element Analysis results were focused upon.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
UNS N06690 is one of the current choices for nuclear power plant steam generator tubing. The objective of this work was the optimization of the double loop electrochemical potentiokinetic reactivation (DL-EPR) method for that alloy. Specimens were tested under different heat treatments.
To achieve adequate protection of assets, use of a protective coating is one of predominant methods used in the oil and gas industry. There are several factors contribute in the coating service life, including surface preparation, coating application, coating material and environmental conditions. It is well known in the coating industry that 70% of the coating failures are attributed to improper surface preparation.
Yokogawa has long time been focusing on optimization of chemical injection process which is vital in almost all process industries. Research has been made to identify the existing problems in chemical injection applications, based on which a unique product solution named FluidCom was developed.This paper addresses the challenges faced in Upstream and Downstream industries in terms of corrosion and how this corrosion threat is mitigated using Chemical injection systems and suggest the best practices and solution to optimize chemical injection system, while significantly reducing the CAPEX and OPEX. Also a reliable closed loop flow control can be achieved for chemical injection dosing application and as a result tighter and efficient control of corrosion.
The complex of jacket structures and flowlines subject to retrofitting consists of 5 jacket structures and 8 subsea flowlines. The arrangement of assets and dimensions used in this work is designed to mimic the challenges posed by real complex scenarios. The complex has three central structures bridge linked (J1, J2 and J3) and two distant structures (J4 and J5) connected to J1 through underwater flowlines.
The recognized international codes, such as ASME [1], API[2], BS[3] provide design and fabrication guidelines for various equipment used in industries viz. pressure vessels, piping and storage tanks. However, the fabrication standards do not address acceptability of the equipment on detection of any deterioration; once put in to the operation.The engineering assessment becomes essential when flaws such as “leakage”, ‘metal loss’ or ‘linear indications’ are detected during routine inspections. Sometimes, observed damages or flaws, do not meet the definition criteria as per assessment steps given in the international standards of fitness for service. In order to asses such damages, a structured engineering approach based on experience and judgment would help in such situations.Describing the structured engineering assessment approach, this paper discusses a case study on typical ‘hydrogenation reactor’ that displayed micro-level leakage. Until 2015, the reactor often leaked during service prior to the assessment. This approach using various NDT methods, microstructural examination and structured engineering analysis identified the problem of dilution of base metal with welding that was leading to inter dendritic corrosion at micro level. The structured engineering analysis paved the forward path by which the reactor could be operated without any unscheduled outages since then after providing improved welding procedure.
There are several well documented reports and standards that detail what information is required to assist with an AC threat assessment. The Association for Materials Protection and Performance (AMPP) also details specific requirements and recommendations in terms of AC and the type of data and information required, in the NACE standard SP0177-2019, “Mitigation of Alternating Current and Lightning Effects on Metallic Structures and Corrosion Control Systems”. The documents and reports which address AC threat assessment, and which are available today, are all premised upon best engineering practices.
As far as the automotive sector is concerned, braking discs (BDs) are objects usually made of Grey Cast-Iron (GCI), i.e. a material exhibiting overall good mechanical properties and castability, but poor corrosion resistance. In particular, looking at the standard working conditions of a disc brake system, several environmental factors can cause and enhance GCI corrosion phenomena, such as: i) atmospheric moisture; i) ionic species contained in aerosols (e.g., chlorides and sulfates); iii) air differential corrosion caused by discs surface soiling by mud or other materials; and iv) galvanic coupling between the rotor and the braking pads.