Search
Filters
Close

Online Conference Paper

View as
Sort by
Display per page
Picture for Impact of O2 Content on Corrosion Behavior of X65 Mild Steel in Gaseous, Liquid and Supercritical CO2 environments
Available for download

Impact of O2 Content on Corrosion Behavior of X65 Mild Steel in Gaseous, Liquid and Supercritical CO2 environments

Product Number: 51320-14433-SG
Author: Xiu Jiang, Dingrong Qu , Xiaoliang Song
Publication Date: 2020
$20.00

CO2 stream in CCS system usually contains impurities, such as water, O2, SO2, NO2, H2S, and other trace substances, which could pose a threat to internal corrosion and integrity of CO2 transportation pipelines. The general and localized corrosion behavior of API 5L X65 mild steel were evaluated using an autoclave both in water-saturated CO2 and CO2-saturated water environments in the presence of varying concentrations of O2. Experiments were performed at 25 °C and 35 °C, 8 MPa and 35 °C, 4 MPa to simulate the conditions encountered during dense, supercritical and gaseous CO2 transport. General corrosion rates were obtained by weight-loss method. The surface morphology of the coupons was examined by scanning electron microscopy (SEM). Results indicated that general corrosion rates at each O2 concentration in CO2-saturated water environment were much higher than those in water-saturated CO2 environment. The corrosion rates did not increase with increasing O2 concentration from 0 to 2000 ppm; instead the corrosion rate reached a maximum with 1000 ppm O2 at 25 °C, 8 MPa and 50 ppm O2 at 35 °C, 8 MPa in water-saturated CO2 environment and 50 ppm at 25 °C, 8 MPa and 100 ppm at 35 °C, 8 MPa in CO2-saturated water environment. However, the change trend of general corrosion rate with O2 content at 35 °C, 4 MPa was different from that in 25 °C and 35 °C, 8 MPa both in water-saturated CO2 and CO2-saturated water environments. Localized corrosion or general corrosion rate of over 0.1 mm/y was identified at each test condition both in a water-saturated CO2 and CO2-saturated water environments. When O2 was added, coupon surfaces were covered by a more porous corrosion product scale. A final series of tests conducted with the addition of 100 ppm and 2000 ppm O2 in CO2 environment with 60% relative humidity (RH) and 80% RH revealed that no localized corrosion was observed and the general corrosion rates were lower than 0.1 mm/y at 25 °C and 35 °C, 8 

Picture for Properties Of Unreacted MEA-Triazine Contamination In Crude Oil
Available for download

Impact of Unreacted Mea-Triazine on Refinery Operation

Product Number: 51321-16832-SG
Author: James Ondyak; James Noland; Parag Shah
Publication Date: 2021
$20.00
Picture for Impact of Welder Performance on the Integrity of Welds, and Enhancement of Welds Quality
Available for download

Impact of Welder Performance on the Integrity of Welds, and Enhancement of Welds Quality

Product Number: MPWT19-15249
Author: FANDEM, QASEM A, ALSUBAIKHY, HANI A, GHAMDI, ABDULRAHMAN M.
Publication Date: 2019
$0.00

Piping and pipeline are considered to be 60-70% of the oil and gas industry equipment. One of the most crucial factors to complete high quality projects within planned schedules is to focus on the quality of welding activities. Furthermore, the non-skilled welder is considered as a main parameter to produce welds with imperfections beyond the acceptable limits. Welders should have the required welding skills to perform the welding activities and produce sound welds, resulting in low weld rejection. On the other hand, poor welder’s performance produces low quality welds which affect the integrity of the welds and contribute to project delay and increase costs. This paper addresses methods to qualify welders and monitor their performance throughout the project lifecycle. The paper will study ISO 9606 approval testing of welders, American Welding Society (AWS) and American Society of Mechanical Engineers (ASME) Sec IX minimum requirements to qualify and certify welders. It will also illustrate the main variables that may contribute to high welding rejection rate, that are directly associated with the welders’ qualification and performance. Moreover, it will study the method of qualifying welders for different levels to properly assign welders based on load and criticality to avoid high welding rejection rate. The study shows that welders’ skill is the main parameter to produce high quality welds. Focusing on the causes of common welding defects, then educate and train the welders on the main factors causing these welding defects, will leave an influence to prevent defect recurrence