Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
Previous studies have shown that the presence of oxygen in wet carbon steel pipelines can present a major integrity management issue. The presence of O2 in the process accelerates corrosion rates and has been identified as a major culprit in the formation of black solids in gas transmission pipelines.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
In 2001 the UK Health and Safety Executive published “Review of Corrosion Management for Offshore Technology Report 2001/00”. This was the first document related to corrosion management system (CMS), which was updated in March 2019 and incorporated the PDCA (Plan-do-check-act) approach. However, the topic of CMS reached its peak after NACE published “NACE IMPACT Study” in 2016.
Leadership is the ability to motivate and inspire people towards achieving a positive change. Leadership starts with an awareness of self and is driven by a deep understanding of both personal values and the values of wider teams and organizations.
Often leadership is confused with the skill of management, which is defined here as the ability to develop and action structured plans, processes, procedures to achieve required outcomes within defined constraints and with specific resources.
High strength low alloy (HSLA) steels are preferred for oil and gas pipelines due to their outstanding mechanical properties. Sulfide stress cracking (SSC) has been a major problem for the application of HSLA carbon steel because of the wet H2S environment which commonly presents in oil and gas industry. Several techniques are applied to the study of SSC of steels, including constant load test with smooth specimens and DCB testing.
The presence of trenches on low alloy steels (LAS) in sour environments at the open circuit potential (OCP) has been reported since 1977. Originally, they were classified as deep and elongated localized corrosion pits. Recently, many authors have referred to them as “stress-induced grooves.
Water jetting is frequently used as a surface preparation method mainly during maintenance. However, water-jetted surfaces are prone to the formation of flash rust in the time interval between surface preparation and coating application. The formation of flash rust increases with increasing temperature, relative humidity, and salt contamination concentration on the surface.
The designer of industrial equipment and piping has three weapons in the fight against corrosionunder insulation (CUI). The first and primary defense against CUI is a high quality, immersiongrade coating. The second is a properly designed and installed weather barrier jacketing. The thirdand, arguably, least understood element is the choice of insulation material. This paper will explorethe ways in which insulation materials influence CUI behavior, presenting results from bothlaboratory and field-testing on seven industrial insulation materials and one composite system.The materials tested were calcium silicate, expanded perlite, cellular glass, mineral wool (bothregular and water-repellent grade), and two types of flexible aerogel blanket material -PyrogelXT and Cryogel Z
High strength carbon steel tensile wires confined in the annulus of flexible pipes might experience corrosion when the annulus is flooded with water, either due to outer sheath breaches or to condensation of water molecules permeating from the bore through the inner sheath. Carbon dioxide (CO2) molecules may also permeate from the bore and reach the annulus, where it dissolves into water to form carbonic acid (H2CO3).
Carbon steel is commonly used as a material for pipelines in oil and gas industry for facilities such as flowlines, down hole tubulars, transmission pipelines. Wide use of carbon steel is conventional due to its economic feasibility, however this kind of steel faces significant internal corrosion problems with corrosion rates reaching up to 10 mm/y if there is exclusion of protective methods. In oil and gas industry such carbon steel pipelines are utilized for transportation of hydrocarbons where they are simultaneously exposed to the co-generated acidic gases (carbon dioxide (CO2) and hydrogen sulphide (H2S)) and water.
The progress of science and technology, and the large-scale construction of infrastructures, not only bring about challenges to cathodic protection (CP), but also provide new opportunities for CP technologies. Challenges and opportunities promote the development of the CP technologies. In recent years, CP technology has achieved great development particularly in the following four aspects: first, numerical simulation calculation technology of cathodic protection, which has made remarkable achievements in theoretical research and practical application; second, data remote monitoring technology of cathodic protection, which has improved the management level of cathodic protection system by combining wireless transmission system and GPRS network; third, great progress has been made in the aspects of AC and DC stray current corrosion mechanism, evaluation method and elimination technology; fourth, the development of photocathodic protection technology.