Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
Previous studies have shown that the presence of oxygen in wet carbon steel pipelines can present a major integrity management issue. The presence of O2 in the process accelerates corrosion rates and has been identified as a major culprit in the formation of black solids in gas transmission pipelines.
The presence of black solids in oil and gas pipelines can lead to major flow assurance issues as solids build up over time within a production application. This paper describes two real-case studies used to identify the dominant mechanisms involved during black solids formation in production applications.A systematic field-based audit was used as a key tool in identifying the source of oxygen (O2) into the production applications. This approach considers field operational parameters, corrosion side-stream monitoring data and in-situ generated data to identify the source of integrity and scaling issues in the system and developing a tailor-made chemical solution.In the first case study, black solids were noticed in the vapour recovery unit (VRU) after several years of operations, whilst in the second one, calcium carbonate and iron (II) oxide were predominantly found to induce black solids due to the oxygen ingress from one of the produced water tanks. In both scenarios, the key component affecting the production process was caused by corrosion mechanisms, whose kinetics became too fast and uncontrollable in the presence of oxygen.The outcome of this systematic approach identified O2 ingression as the root of the problem and enabled the design of a fit-for-purpose chemical management program to prevent further black solids formation in the system.
Alloy K-500 (UNS N05500) is concomitantly a centurial material and the very first precipitation-strengthened nickel-based alloy, then developed in the 1920s by the newly-formed International Nickel Company, or Inco. Derived from Monel 400 (UNS N04400) that was invented in 1901, Alloy K-500 shares many of the same corrosion and tribological characteristics. Being a pioneer alloy with so-called “stain-less” characteristics, AlloyK-500 also established itself as the first high-strength oilfield nickel alloy, having survived sour service conditions exceeding the capabilities of the low-alloy steels of the time. From early naval propeller shaft applications togeneral cross-industrial uses, Alloy K-500 has always been considered a corrosion-resistant alloy, or CRA. For instance, it has been included in the NACE MR1075 document right from the first 1975 edition.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Natural gas pipelines are subject to internal corrosion. Internal corrosion of steel pipelines can cause natural gas leakage, leading to wasted energy, explosion hazards, and methane emissions. The U.S. Department of Transport reported numerous case histories of corrosion problems and failures in wet gas pipelines. The National Energy Technology Laboratory (NETL) performed an incident survey from 2010 through 2018 and found that 112 (12%) of these incidents in the U.S. transmission lines were caused by internal corrosion.
During drilling operations, the components in the drill string including the bottom hole assembly (BHA) remains in permanent contact with the drilling fluid. Therefore, besides non-magnetic properties and high strength the corrosion resistance of the materials utilized for the BHA plays a decisive role specially in applications involving harsh environments. In fact, strain-hardened CrMn-austenitic steels commonly used in directional drilling technology show a high susceptibility to pitting corrosion and environmentally assisted cracking in drilling fluids with a high chloride (Cl-) content at elevated temperatures.