Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
Alloy UNS N07718 (hereafter abbreviated as 718) is one of the most versatile precipitation-hardened nickel-based corrosion-resistant alloys (CRAs) used for both surface and sub-sea components in oil and gas production service. API 6ACRA1 provides heat treatment windows and acceptance criteria for 718 in these oil and gas production environments, in which the heat treatment is intended to obtain high strength and to minimize the formation of δ-phase at grain boundaries. As pointed out in NACE MR0175 Part 32 (Table 1), field failures of 718 components in sour service are primarily related to stress corrosion cracking (SCC) at elevated temperatures and hydrogen embrittlement in the lower temperature range. The latter is specifically called galvanically induced hydrogen stress cracking (GHSC or GIHSC), which is typically caused by atomic hydrogen uptake from galvanic corrosion or cathodic protection (CP) when 718 is used with steel components in a seawater environment. CP is normally used to protect steel component from corrosion in subsea environments.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Carbon steels and low alloy steels are the workhorse of several industries where properties such as strength, fracture toughness and weldability play a key role. In addition to these properties, carbon steels are also the most cost effective materials is several applications. Of particular interest is the API 5L X65 which is widely used in oil and gas exploration, production and transportation service.
Various polymeric coatings have been exposed to natural saltwater environments in Buzzard' s Bay, MA and at La Costa Island, FL for the last 18 years and 21 years respectively. The coating systems were applied to 8 inch (20.32 cm) by 8 inch (20.32 cm) by 40 feet (12.19 m) A36 steel "H" pilings. The depth of the water ranged from 4 feet (1.22 m) to 8 feet (2.44 m). Periodic visual inspections have been conducted to evaluate the performance of the coating/ primer systems in the splash zone and in the immersed zone. The coatings had windows to evaluate the under film corrosion attack by saltwater present near the Cape Cod canal. The coatings were evaluated according to ASTM visual standards at low tide. Results of the coating inspections and an evaluation of their effectiveness in preventing the corrosion of steel pilings in seawater will be presented.
Bleach is widely used domestically or industrially in many fields. For example in water treatment, bleach is a very effective additive for disinfection and odor control. It is used for treating polluted water containing organic contaminates and waterborne pathogens.
Corrosion of reinforcing steel is recognized as the major cause of the deterioration of reinforced concrete structures. Exposure to de-icing salts, seawater and chloride-containing set accelerators, plays a significant role in reinforcing steel corrosion (Figure 1). When the chloride content at the rebar level exceeds the threshold for initiation of corrosion, the passivation protective film on the rebar surface is destroyed and a corrosion cell can form either on the same piece of rebar with anodic and cathodic sites adjacent to each other, or a macro-cell between two different layers of reinforcement.
Embedded galvanic anodes designed to protect reinforcing steel in chloride-contaminated concrete adjacent to concrete “patch” repairs were developed in the late 1990’s. The original concrete anode was puck-shaped and consisted of high purity zinc encased in a mortar formulated with high porosity and lithium hydroxide to maintain a pH greater than 14 to keep the zinc active over the life of the anode. This approach of a high pH mortar around the zinc to prevent anode passivation is commonly referred to as alkali-activation.
Nuclear power has been the largest source of carbon-free power in the U.S. (and much of the developed world) for almost a half century. As such, in the U.S. today, nuclear power plants of the Light Water Reactor (LWR) design generate 20% of all electricity, comprising over half of carbon-free electricity generation. In order to meet the short-term 2030 greenhouse gas emission reduction target, the existing nuclear fleet will play an important role, while the development and deployment of advanced reactors such as the small modular reactors (SMR) of the LWR design can be accelerated.
Geothermal energy has been an integral part of the renewable energy mix for several decades. The total installed geothermal power generation capacity by the end of 2021 was 15,854 MW. Despite the challenges imposed by the pandemic, new capability was developed, and capacity was added in several countries. The capacity was increased by 246 MW from the figure in 2020.4
Abrasive material forms a major component for surface preparation in coating applications. Since blasting method developed in 1890s, abrasive materials and its application methods also significantly improved to enhance blasting efficiency. In general, steel grit and shot ball are being used predominantly as metallic abrasives. Garnet and coal slag are used as non-metallic abrasives. Each abrasive is selected andapplied in accordance with the work location and substrate material of structures to be coated. In this study, we have evaluated a new artificial non-metallic abrasive (ferrochrome slag) which is a by-product from ferrochrome production process for stainless steel. This evaluation also included the checking of surface cleanliness performance and coating quality based on international test methods and field trials. For verifying the cleanliness quality, various tests were conducted as per international standards (ISO 8501-8503). Sea water immersion test (ISO 2812-2) and cyclic test (ISO 12944-9) were carried out to checkcoating performance after blasting. The field test results indicates that all inspection and quality criteria of surface preparation were met as per international standards. Furthermore, coating performance test results also showed this abrasive does not have any adverse effect on coating properties.