Search
Filters
Close

Online Conference Paper

View as
Sort by
Display per page
	Picture for On the Pitting Corrosion Resistance of Metallic Materials Used in Drilling and Reservoir Characterization Applications
Available for download

On the Pitting Corrosion Resistance of Metallic Materials Used in Drilling and Reservoir Characterization Applications

Product Number: 51324-20872-SG
Author: Helmuth Sarmiento Klapper; Julia Ditmann; Sebastian Jesse
Publication Date: 2024
$40.00
Because of their versatility CrMn-stainless steels have become the most used structural materials in directional and while-drilling reservoir characterization tools. Nevertheless, pitting and environmentally assisted cracking (EAC) are a major concern when these materials are subjected to high halide-containing water-based drilling fluids at elevated temperatures. Consequently, pitting corrosion resistance becomes a crucial property to guarantee operational reliability and integrity of drilling equipment. Indeed, nickel-stabilized austenitic stainless steels and super austenitic stainless steels with higher contents of chromium and molybdenum have been recently developed as alternatives in drilling operations involving harsh environments. In this study, the pitting and repassivation behavior of several grades used in drilling technology was investigated using electrochemical methods. The tests were conducted in brines with different pH-values at temperatures ranging from ambient temperature to 150 °C. Experimental results are compared to PREN-Mod and CPT-values as well as to results from ASTM G48 Method A. The experimental data provided in this paper demonstrates the lack of correlation between the real pitting resistance of most grades commonly used in drilling equipment in brines at elevated temperatures and the commonly used PREN-Mod values. In addition, the limited applicability of results from standardized test methodologies for predicting pitting susceptibility in service is confirmed. The discussed electrochemical results provide on the other hand a more suitable basis for defining criteria regarding materials selection in drilling technology.
Picture for On The Suitability Of ASTM 532 IIB Cr White Cast Irons For Erosion-Corrosion And Abrasion-Corrosion Applications
Available for download

On The Suitability Of ASTM 532 IIB Cr White Cast Irons For Erosion-Corrosion And Abrasion-Corrosion Applications

Product Number: 51321-17018-SG
Author: Jiaren (Jimmy) Jiang; Yongsong Xie; MD Aminul Islam; Baisheng Yao
Publication Date: 2021
$20.00
Picture for Online Seam Treatment of ERW pipes for proper material selection, process control and toughness improvement
Available for download

Online Seam Treatment of ERW pipes for proper material selection, process control and toughness improvement

Product Number: MPWT19-14408
Author: C. Cincunegui, M. Coloschi, P. Marino, E. Martínez, and M. Valdez
Publication Date: 2019
$0.00

Electric Resistance Welded (ERW) pipes X60M / X65M API 5L PSL2, with resistance to ductile fracture propagation as per API 5L PSL2 Annex G [1] are achieved not only by setting the proper welding parameters and the steel cleanliness, but also by a combination of metallurgical processes affecting the final weld line and HAZ microstructure. The steel chemistry is the starting point to minimize the presence of inclusions, central segregation and the toughness impairment due to harmful elements, S, P, etc. on the pipe body, with a given casting and rolling technology. During the welding process, the right parameters combination is needed to avoid cold weld, penetrators, and other weld imperfections. At the last stage, the Seam Heat Treatment (SHT) has to be adjusted in a way that the steel response to the thermal cycles leads to the compliance of mechanical requirements at the weld line and Heat Affected Zone (HAZ). This heat treatment is performed through electromagnetic induction using several coils, which allows it to have a rapid and localized heating of the HAZ into the austenitic region, and that is followed by air cooling. The objective is to refine the structure and to eliminate brittle constituents around the weld line. As the SHT strongly affects the weld performance, the optimum processing conditions such as austenitization temperature and cooling rate may not be the same for all steel chemistry, and has to be carefully selected. The capability to model the thermal cycle after the ERW process and the understanding of the metallurgical behavior of different steel chemistries and dimensional configuration becomes the main target of any ERW pipe manufacturer aiming supply reliable Line Pipes as per API 5L PSL2 Annex G. In this work, a numerical thermal model of the SHT is presented along with validation and simulation results. A summary of metallurgical thermal cycle simulations by means of a Gleeble® 3500, applied on different steels is also included.

Picture for On-Site Corrosion Inhibitor Detection For Improved Corrosion Management
Available for download

On-Site Corrosion Inhibitor Detection For Improved Corrosion Management

Product Number: 51321-16792-SG
Author: Andy Osnowski; Scott Rankin; Harry Grover; Jenni Howe; Fiona Carson
Publication Date: 2021
$20.00