Search
Filters
Close

Optimisation Of Hydrogen Stress Cracking Resistance Of High Strength Precipitation Hardened Nickel Alloys

 The Precipitation Hardenable (PH) Nickel alloys N09925, N07718, N09945, N09946 and N07725 are widely used for critical downhole oil field applications such as high strength tubing hangers and completion equipment.  The materials are particularly useful in High Pressure/High Temperature wells where high strength and corrosion resistance are required in H2S containing production fluids. Over the last 20 years a limited number of field failure investigations in PH Nickel alloys have been related to the presence of sufficient amounts of intergranular precipitates promoting hydrogen embrittlement, which results in brittle cracking of UNS alloys N07718 3,4 and alloy N077255 and N077166

Product Number: 51322-17960-SG
Author: Stephen McCoy, Brian A. Baker, William MacDonald
Publication Date: 2022
$0.00
$20.00
$20.00

The precipitation hardened nickel alloys are designed for Oil & Gas applications requiring high mechanical strength and toughness combined with high corrosion resistance in sour environments. Over recent years there has been increasing industry demand to improve quality control and categorise the various PH Nickel alloy grades resistance to Hydrogen Stress Cracking (HSC) for critical High PressureHigh Temperature environments. This is a complex corrosion mechanism with many factors including composition, strength, microstructure and grain boundary cleanliness1,2. Evaluation efforts have used multiple techniques to measure the effects of HSC resistance with this paper concentrating on the Slow Strain Rate Test (SSRT) according to TM0198 Appendix C and the quality control of API6ACRA.

The precipitation hardened nickel alloys are designed for Oil & Gas applications requiring high mechanical strength and toughness combined with high corrosion resistance in sour environments. Over recent years there has been increasing industry demand to improve quality control and categorise the various PH Nickel alloy grades resistance to Hydrogen Stress Cracking (HSC) for critical High PressureHigh Temperature environments. This is a complex corrosion mechanism with many factors including composition, strength, microstructure and grain boundary cleanliness1,2. Evaluation efforts have used multiple techniques to measure the effects of HSC resistance with this paper concentrating on the Slow Strain Rate Test (SSRT) according to TM0198 Appendix C and the quality control of API6ACRA.

Also Purchased