Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
South Ghawar Producing Department has exerted substantial efforts towards executing a seldom project of replacing numbers of extraordinary vessels. Those horizontal vessels were recommended for replacement due to major and excessive Step Wise Cracking, irregular blister and inclusions identified in several traps. These vessels are subject to Hydrogen Induced Cracking, known as HIC and this is mainly SGPD facilities were constructed on old time where SAES was not mandating to utilize HIC resistance material. In 2014, a company wide survey started and as a result 27 out of 121 were identified with HIC damage. To overcome these challenges, SGPD developed a robust action plan, which consists of two parts:● Long Term Plan which is replacing the impacted vessels with upgraded material “HIC resistance material”● Short Term Plan to continue the safe and reliable operation of impacted vessels until the vessels are replaced by managing and monitoring HIC growth.With the short and long term action plan, SGPD controlled HIC concern in affected vessels. But we didn’t want to stop here and we wanted to go the extra mile and add a proactive measure rather than only reactive. Therefore, we partnered with R&DC to implement a proactive initiative at SGPD as the first department in Saudi Aramco called Step-Wise Hydrogen Induced Cracking Toolkit which falls under IR.4.0.
Boiler system is one of the most critical systems for a utility plant. A utility plant had experienced high percentages of boiler downtime owing to boiler tube sheet cracking failures. Investigations carried out revealed high stress at the tube-to-tube sheet joint in the boiler fire-side entrance. Tube-to-tube sheet joints at the boiler fire-side entrance had been fabricated by strength welding and without any expansion. The strength welded joint had created undue stress leading to cracking of the weld joint by thermal expansion. A higher quality expanded joint consisting of expanding, flaring and seal welding the fire-side entrance was implemented during the re-tube process. The utility plant has now zero downtime due to boiler tube failure. This article summarizes the description and history of failures with the boiler at the utility plant; investigations and corrective actions carried out; and the present improved condition of the boilers.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
From day to day, Robots advance from testing in labs to operating in the outside world. Theindustrial application of Robotic technologies continually increases, providing unique solutions fordifferent challenges. Flare System is an important and critical equipment required for continuoussafe operations for any petrochemical plant addressing proper burning of excess hydrocarbongases, unusable gases which cannot be recovered or recycled, and gas flaring protects againstthe dangers of over-pressure. This paper discusses the different types of robotic inspection,advantages, and limitations based on actual site demonstrations. As an innovative case, here tointroduce actual business case for close aerial inspection and surveying technique to avoidpolyethylene plant shutdown and providing a reliable inspection technique for on-stream integrityevaluation for the flare tip. Drones, formally known as unmanned aerial vehicles (UAVs), are aflying robot that can be remotely controlled, and offer an innovative inspection method launchedbetween 2006-2008 for Engineering professional aerial inspection and surveying using RemotelyOperated Aerial Vehicles (ROAVs). The visual inspection detection accuracy of (ROAV) offerhigher than the normal visual inspection and easily approach all the flare structure from fourdirections. Drone inspection cost is competitive considering the cost of maintenance to dismantlethe flare tip. Drone inspection can be used to assess the elevated flare parts for any seriouslydamage in order to define a clear maintenance scope ahead of shutdown.
Testing is performed in seawater cooled scale model heat exchangers with 0.5 ppm residual chlorine during a period of 18 months. Thus, it shows a corrosion resistance of the materials at a heat flux representative to a tube skin temperature up to 95°C inside in the seawater.