Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
Fusion bonded epoxy (FBE) is the primary coating used in North America for new pipeline construction and is strongly featured in the Middle East1. Pre-coated FBE pipe is routinely stockpiled and stored in large quantities at several locations close to pipeline right-of-ways. Once stockpiled, most of the pipesremain un-used until an inspection and remediation program is initiated2. Integrity projects purchase FBE coated pipe in advance and stockpile it until it is required. In addition, project delays and left-over pipe from completed projects can cause stockpiling for future use for undetermined periods of time. Under ultraviolet (UV) exposure in the presence of air, photooxidative degradation of FBE coatings occurs due to photometrical reactions arising from UV absorption.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
When choosing a Fire-Protection material to meet building code requirements to insulate steel for a prescribed period to facilitate safe evacuations and emergency response from commercial buildings in the event of a fire, there are many factors that influence the selection of an Intumescent Fire Resistive Material (IFRM) over a Spray Applied Fire Resistive Material (SFRM). It could be a concern of the weight of the system; Portland Cement based SFRM’s are typically much heavier and bulkier than IFRM’s. Another factor could be durability, based on either corrosion resistance or the ability to withstand considerable physical or environmental damage.
Metal and its structures corrosion is a natural process. The process started and accelerated in the presence of electrolytes [1, 2]. Thus, it's highly encouraged to stop this electrolyte passage. One of the ways to resist the passage of electrolytes is by making a barrier. The most popular method of such a barrier is an organic coating which mainly comes from polymer resin along with pigments, and additives. Different organic coatings are being used to make a barrier that can ultimately protect the metals and their structures. Epoxy, polyurethane (PU), and acrylate coatings are widely being used for this purpose.
Precipitation and deposition of wax or asphaltenes is a commonly encountered issue in the oilfield, causing flow restrictions, compromising the integrity and performance of equipment (some safety critical), limiting access during well interventions, causing “fill” in vessels, stabilizing emulsions and sometimes enhancing corrosion due to under-deposit corrosion and increased biofouling. Developing an effective management strategy that minimizes the total cost associated with these threats requires reliable prediction of whether they will occur, their severity and their location within the production system. Such prediction typically combines the use of compositional data and phase behaviour (typically referred to as “PVT data) with Equation of State (EoS) modelling plus the experimental measurement of key parameters specific to each issue.
Blue discoloration of off-white sealant in contact with copper tube at medical facilities underconstruction was observed. The copper tube was being installed to transport medical-grade gasses and the sealant was used as an acoustical and smoke sealant at through-wall penetrations. In some areas of one facility, galvanized steel pipes inserts were used as sleeves for the copper pipes through the drywall, while in other areas, the copper pipe penetrated directly through the drywall. Observations of the discoloration prompted an evaluation of the copper tube, sealant, and potential adverse interactions.
Hydrocarbon production currently occurs in a variety of onshore and offshore locations. Most offshore production in shallow water (< 500 m) has reached maturity, with most of the more accessible reserves having already been exploited. As a result, exploration and production in offshore environments has been extended to deeper water (> 500 m), which usually incurs more expense and overall project risk for operators and service providers. Production from deepwater oil fields is expected to grow by 40%, to 10 million bpd (10% of total global output), by 2025.
Harvesting ocean energy will play an important role in supplying fossil-free energy for future generations. The oceanic environments around the world are unfortunately of the toughest possible to operate in. Most technologies use a power take-off (PTO) unit with mechanisms that are placed inside protective enclosures or sealed buoys to protect from the harsh environment in seawater. This gives a barrier from the corrosive electrolyte and biological activity that can deteriorate the components. The energy from the oceans in form of relative movements and forces are transferred to the PTOs with help from complex dynamic sealing systems.
Close Interval Surveys (CIS) are frequently performed on pipelines to measure the pipe to soil potential. While the instrument is connected to the pipe it is possible to obtain additional types of readings that can be analyzed to provide further information. Many modern electronic instruments are capable of functioning as oscilloscopes in addition to obtaining synchronized CIS readings. The information captured by the oscilloscope function provides a waveform for further analysis. The waveform is captured as a raw, unfiltered signal with at least 2000 data points per second for the duration of the interruption cycle or longer.
Stainless steels and Ni-base alloys are often considered as construction materials in applications where highly corrosive conditions are expected. High levels of halides, low pH and high temperatures are factors that often contribute to the selection of such materials.
Ten different alloys have been included in this work, representing a range of highly alloyed stainless steels and Ni-base alloys. The purpose has been to evaluate the corrosion resistance of stainless steels with alloying content in the 6Mo range or higher, and competing Ni-base materials. The austenitic grade N08904 and two super-duplex grades have also been included for reference.
Carbon and low alloy steels (CS and LAS, respectively) used for exploration and production in the oil and gas (O&G) industry are normally exposed to environments that may contain H2S in a wide range of concentrations. In aqueous solutions, H2S acts as a cathodic poison.1,2 A cathodic poison inhibits the recombination of atomic hydrogen to H2, and as a result, favors its absorption by the metal.1,2 In the presence of a susceptible microstructure and the simultaneous effect of applied or residual tensile stress, a crack can nucleate and propagate, when a critical concentration of hydrogen is reached in the metal.3 This environmentally assisted cracking (EAC) phenomenon is known as Sulfide Stress Cracking (SSC).2 SSC is commonly addressed as a case of hydrogen embrittlement (HE) damage.2
In aqueous carbon dioxide (CO2)-saturated environments, such as those found in geothermal energy, oil and gas and carbon abatement industries, various naturally occurring layers can be found on the internal surface of carbon steel infrastructure, such as pipelines, as they corrode in the mildly acidic conditions. Amongst the most commonly found layers are iron carbonate (FeCO3), iron carbide (Fe3C) and magnetite (Fe3O4). FeCO3 can offer corrosion protection to the underlying steel when formed under certain conditions, as too can Fe3O4. Fe3C is typically associated with enhancement of electrochemical activity of carbon steel and is revealed due to preferential dissolution of ferrite in the steel microstructure – through the formation of a porous network at the steel surface. Each of these layers play a fundamental role in the uniform and localized corrosion of the underlying carbon steel.
The aim of this work is to identify an approach to materials selection and corrosion control that can address the specific requirements of a Carbon Capture and Storage (CCS) project. This work is largely based on the accumulated knowledge and expertise that has been published. Besides the direct guidance from this document, specific topics may require more detail that can be found in the references.