Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
Naphthenic acids and sulfur species in crude oil cause severe corrosion of the steel equipment of crude distillation units in oil refineries.1–3 Because of rapidly changing oil economics, the refineries have inclined towards cheaper “opportunity crudes”, but the high levels of corrosive species, mainly naphthenic acids and organosulfur compounds, in these crudes would reduce the life of the equipment, and also increase the risk of catastrophic failure.3 So the opportunity crudes are often blended with the crudes containing lower levels of corrosive species; this decreases overall concentration of corrosive species and the corrosion rates.4,5 However, corrosion rates are not simply proportional to the concentrations of naphthenic acids and sulfur species that are present in the crude oil.4,5 Without accurate estimation of corrosion rates by crude oils or their “blends”, carbon steel equipment needs to be constructed with higher wall thickness for safety; if still insufficient, high alloy steels are required.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
The formation of common inorganic scales (such as BaSO4, SrSO4, CaSO4 and CaCO3) in production tubing presents a significant problem in the oil and gas industry. The mixing of incompatible waters or changes in temperature, pressure, pH or hydrodynamics of a fluid may result in scale deposition, with the potential to cause constrictions in production tubing when allowed to build up. This can lead to costly interventions that result in delayed production and loss of revenue. Therefore, an effective scale mitigation strategy is a crucial part of field development and management.
Equipment monitoring and assessment regimes are largely driven by integrity, reliability and economic motivation. The data from corrosion measurement tools allows for the evaluation and determination of inspection intervals as well as the remaining life of equipment and piping. Corrosion monitoring tools are widely used measurement tools, which provides wall thickness loss, cracks and other defects of equipment and piping.
ASTM Grade 29 titanium alloy (UNS R56404) has been traditionally used for oil and gas stress joints (TSJ). However, given the general difficulty of processing this type of alloy in the beta quenched condition and more recently the exorbitant increase in alloying costs due to the ruthenium, a new solution is required if titanium is to be considered for future applications. This 475 alloy was developed to meet geothermal requirements to replace Grade 29 seamless casing. The essential material properties of Grade 29 in bulk and welded condition as used for titanium stress joints were reported by Shutz et al.
Ni-base alloy weld material has been widely used for primary reactor components of BWR. Stress corrosion cracking (SCC) in Ni-base alloy welds is of an increased importance and an ongoing subject in the industry to secure material reliability of the components especially for long-term operation of light water reactors. Although alloy 82 has shown excellent service performance in BWR applications, it is known that alloy 82 exhibit SCC susceptibility in laboratory tests under simulated BWR environment with a combination of particular, severe test conditions such as high level of material cold work and highly accelerated environment. In addition, few experiences with SCCs in the welds associated with alloy 82 have been recently reported in the operating BWR plants.
Nuclear energy currently contributes approximately 10 % of the worldwide energy mix.1 Nuclear energy generation is a form of low-carbon electricity, typically run as base-load, which alongside renewables can help nations toward climate change goals. Nuclear fission thermal reactors make up the majority of the reactors operating today. Nuclear fusion on the other hand is a promising alternative which produces less radioactive waste and does not have a reliance on the finite source of uranium fuel. Eurofer-97, a reduced activation ferritic-martensitic (RAFM) steel, will be used as a structural material for fusion reactors. The earliest literature reference to RAFM steels originated from 1994 by Abe et al.2 One option for the European demonstration fusion reactor (DEMO) is to use a water-cooled lead-lithium (PbLi) breeder blanket (WCLL BB) design for heat extraction. Breeder blankets will be used to generate a source of tritium, for the fusion reaction with deuterium.
The current approach to corrosion severity prediction is to use long-term averages of environmental parameters (such as relative humidity, temperature, and pollutants), geographic features (such as coastal proximity), and witness coupon corrosion rates of indicator materials to classify an environment into one of a small number of severity categories. However, recent work has revealed that brief changes in environmental conditions—even those lasting only a few hours—can significantly affect total corrosion damage, and long-term averages of environmental conditions are not sufficient to accurately predict cumulative corrosion damage. To more accurately measure the corrosion damage from these short-term events, corrosion sensors are becoming increasingly popular. The frequent acquisition of data and increased measurement sensitivity are attractive features, however the data from these corrosion sensors is still difficult to interpret in many cases.
Major manufacturers of protective coatings, steel fabricators, painting contractors, galvanizers, and end users, were surveyed to identify surface preparation and coating application costs, coating material costs, typical industrial environments and available generic coatings for use within those environments, and expected coating service lives (practical maintenance time).
Austenitic stainless steels are used for the core internal structures (bolts, baffles, formers) in Pressurized Water Reactors (PWR). During operational service, baffle to former bolts have been observed to undergo Irradiation-Assisted Stress Corrosion Cracking (IASCC), which is characterized by intergranular cracking. IASCC results from the material corrosion susceptibility, the microstructural changes induced by irradiation, the corrosive media and the mechanical loading. Numerous studies have been conducted to evaluate the complex interplay between the different factors, mostly focusing on InterGranular Stress Corrosion Cracking (IGSCC) of pre-irradiated samples in PWR environment. In particular, the oxidation behavior of grain boundaries and the mechanical loading of grain boundaries have been assessed in details. Depending on the oxidation time and the GB nature, oxide penetration along GB has been observed. The intergranular oxide is composed of (Nix,Fe1-x)Cr2O4 spinels. However, all grain boundaries (GBs) do not have the same oxidation behavior, and it has been reported that high angle grain boundaries show higher oxidation susceptibility than special grain boundaries. Radiation induced segregation at grain boundaries might also lead to higher susceptibility to intergranular oxidation. Irradiation also modifies the deformation mechanisms in austenitic steels resulting in strain localization which is believed to be an important factor in IASCC initiation as it can lead to local increase of the stress due to dislocation pile-ups at GB.
The success of corrosion protective coating systems relies, to a great extent, on the coatings’ inherent barrier properties. This barrier property signifies the coating’s ability to withstand the permeation of sea water and oxygen, thus minimizing corrosion of the underlying metal. While various additives or pigments can promote the barrier property of coatings, one of the most common pigments is aluminum flakes [1-4].The idea behind their use is simple, and essentially relies on having the aluminum flakes in the coating oriented parallel to the underlying substrate. With them in place, the pathways for sea water and oxygen effectively increase, thus preventing the progression of corrosion. However, while having been employed in numerous coating formulations for many years, the evidence for the success of aluminum flakes as barrier pigments is still lacking.
Consistent coating inspections and planned maintenance are essential to asset integrity. Non-existent, delayed, and cursory inspections can allow premature coating breakdown, corrosion, and costly failures. On the other hand, improper maintenance can be ineffective, costly, and wasteful. The challenge involved in executing informative inspections and effective maintenance practices is identifying and understanding the numerous conditions that can contribute to a reduction in the lifecycle of an asset. This paper will discuss some of the aspects involved in identifying coating conditions that are likely to result in failures and developing cost effective coating repair strategies that will extend the life of the asset.
There are hundreds of kilometers of above-ground carbon steel pipelines located in 32 in-situ oilsands facilities operated by 18 producers in Alberta Canada, with a total thermal oilsands capacity (operating) of 1.8 million barrels per day. A typical in-situ oilsands operation is for recovering bitumen located 75 meters or more below the surface, by the injection of steam.