Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
Hydrothermal liquefaction (HTL) of wet and waste biomass feedstocks into crude bio-oils and other chemicals has attracted particular attention in Canadian and international clean energy sectors. Until today, very little effort has been employed to address corrosion problems of HTL core components under operation, leading to a significant delay in the construction of industrial-scale HTL plants. In fact, a range of oxygenated, aggressive sulfur and/or chlorinated compounds, as well as organic acids, can be introduced during the conversion at the operating temperature range of 200–400℃, consequently creating highly corrosive environments to the reactor alloys. It is thus important to investigate the performance of alloys exposed to conversion processes to determine the cost-effective construction and long-term safe operation of the HTL plants. In this study, the corrosion resistance of two candidate austenitic stainless steels, including UNS S31000 and UNS S31603, was assessed in a batch reactor containing bamboo feedstock. The corrosion behaviors of the austenitic stainless steels were evaluated using weight change measurement methods and advanced microscopy techniques. To advance corrosion mechanistic understanding, the chemistry of conversion products was also analyzed. This paper is a summary of our most recent results obtained.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Carbon capture, utilization and storage (CCUS) is one of the key technologies to achieve the net-zero emission. One of the CCUS method is CO2 injection to depleted oil and gas wells or aquifers and storage (CCS). The CO2 emitted from fossil fuel-based powers and industrial plants are captured and transported to the injection point by ships or pipe line. Following that, the dense phase or supercritical phase CO2 will be injected to depleted oil and gas wells or aquifers through oil country tubular goods, for examples, seamless pipe.
Differences between temperate and tropical sites in terms of electrochemical behavior (e.g. open-circuit potential and cathodic current for oxygen reduction). One difference is critical temperature for biofilm ennoblement. Results are discussed in terms of risk for crevice corrosion for stainless steels in tropical seas.
Austenitic stainless steels (SS), such as 304L and 316L alloys, are largely used for structural components in nuclear power plants due to their good corrosion resistance, especially under high temperatures and aqueous environments. However, operational experience on the primary circuit of pressurized water reactors (PWRs) has shown an increasing number of cases of stress corrosion cracking (SCC) on austenitic stainless steels components after long-term exposure.