Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
Corrosion can be a costly and annoying concern in a building's potable water
The forms of corrosion that can occur include:
1) General Corrosion
2) Pitting Attack
3) Concentration Cell Corrosion
4) Dealloying
5) Erosion Corrosion
6) Galvanic Corrosion
These corrosion forms can be avoided by a number of techniques including materials selection, system design and chemical treatment of the water.
Coatings, sometimes in conjunction with cathodic protection, have been used to mitigate the corrosion of storage tanks in building systems, but are not addressed in this paper.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
An unexpected failure of 316L Stainless Steel instrument tubing occurred in a high pressure Hydroprocessing unit resulting in a shutdown of the unit. The tubing system consisted of a compression type fitting commonly used in instrument systems and had only been in service for 3 years when the failure occurred. The failed tubing samples were removed for metallurgical analysis and determination of damage mechanism.
Metallurgical analysis and finite element analysis of the tubing identified excessive cold working leading to hydrogen embrittlement as the primary mode of failure. This paper details the investigation into the failure to arrive at the root cause and the preventive measures adopted to assess the installed population of tubing in similar service.
In Upstream, CRAs (Corrosion Resistant Alloys) are widely selected to handle seawater and brines in piping, valves, pumps, heat exchangers, vessels, and seawater injection1-4. Also, disposal of produced water is commonly performed through injection into spent fields. Water from a variety of sources including produced water, seawater and surface/fresh water may also be injected to create pressure drive for existing fields. Usually dissolved oxygen (DO) is not fully controlled when there are multiple sources of injection water and sometimes even possibility of injection of fully oxygenated water exists. For oxygenated seawater, the PREN (Pitting Resistance Equivalent Number = %Cr + 3.3 *(%Mo + 0.5 %W) + 16 %N) shall be >40 and limits are applied to the temperature4. Other applications involve Solid CRA or cladded production pipelines which may get flooded with seawater during installation and precommissioning.
The corrosion resistance of sucker rod materials can be a significant concern, especially in aggressive service environments with high acid gas concentrations. Corrosion-related failures have been associated with increased levels of produced hydrogen sulfide (H2S) and carbon dioxide (CO2). The presence of corrosion damage, which is characterized by local material dissolution and pitting formation under the influence of CO2 and/or H2S, provides the initiation sites in a fatigue cracking mechanism. The fatigue crack propagation in corrosion aggressive environments is associated with the following factors: (1) local tensile stress concentration at crack tip, and (2) local corrosion dissolution. Therefore, using a material that tends to re-passivate as it interacts with the environment would be the optimum solution in order to mitigate the likelihood of field failures and reduce overall operating costs. Regarding passive film disruption processes abrasion and high temperature influences were not considered at this stage of the present study and repassivation kinetics were not measured. Conventional sucker rod production processes include normalize and temper (N&T) or quench and temper (Q&T) heat treatments to meet desired strength levels of low alloy steels. In order to enhance the corrosion properties and provide a resistant sucker rod solution, 13Cr martensitic stainless steel may provide a viable alternative to low alloys steels. This paper focuses on the characterization of 13Cr sucker rod material by comparing the general corrosion and corrosion fatigue performance with low-alloy steels.
Austenitic and ferritic-martensitic steel were irradiated with protons while exposed to simulated PWR primary water for 4-72 hr in 320°C water with 3 wppm hydrogen while irradiated at surface dose rates from 400-4000 kGy/s (4x10-7 to 7x10-6 dpa/s).
Although Microbiologically Influenced Corrosion (MIC) is a critical damage mechanism that had been researched for decades in different environments, yet diagnosing a specific industrial failure to be attributed to MIC can still be challenging. The challenge of accurately identifying an MIC failure is partially due to the similarity of the failure morphology with other damage mechanisms, e.g., pitting corrosion due to chloride. Furthermore, the variously proposed initiation and propagation mechanisms for different types of bacteria may illustrate to the failure analyst that the MIC mechanisms are not yet well established. The confusion of MIC failure identification could also be aggravated by the fact that the presence of bacteria in a system does not necessarily mean that MIC is the culprit. Therefore, this paper will shed some light on the overlapping areas between MIC and pitting corrosion, especially the morphology of the attack. Moreover, several steps will be highlighted and discussed on how to correctly identify if MIC is the culprit in a specific failure.
Irradiation assisted stress corrosion cracking (IASCC) is a phenomenon caused by neutron irradiation of austenitic stainless steels (SSs). The crack growth rates (CGRs) of IASCC for boiling water reactor (BWR) components are needed for assessments to ensure component integrity. The CGR formula has been proposed as a function of the stress intensity factor (K).
Thanks to their good corrosion resistance and ease to shape and weld, austenitic stainless steel grades (e.g. UNS S31603) are used as standard materials for the construction of municipal wastewater treatment plants (WWTP). The main factors influencing the corrosiveness of the fluids in WWTP are halides concentration (more specifically chlorides), H2S content, low pH, temperature and their combined effects.
In municipal wastewater streams, chloride content, known to be one of the critical agents affecting the stability of protective passive layers for stainless steels2, is usually around 50-200 mg/L and in this content range does not present major issues for the austenitic grade.
This paper shows results comparing the localized corrosion resistance of seven martensitic, ferritic and austenitic stainless steels in deaerated 10,000 ppm Cl- solution at ambient temperature.
To support installed tube lines, plastic clamp systems (which cause a high risk of corrosion failure of the pipe and tube) have been widely used. Crevice corrosion resistance of such was investigated based on the standard test methods. Characteristics were analyzed and operational life time estimated.
In the present study, corrosion tests were performed using both weight loss and electrochemical techniques for Ni-Cr-Mo (W) alloys in hydrochloric (HCl), sulfuric (H2SO4), nitric (HNO3) acids and their various combinations.