Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.

During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.

Search
Filters
Close

Corrosion Performance of Candidate Constructional Steels under Batch-mode Hydrothermal Liquefaction (HTL) Conditions

Hydrothermal liquefaction (HTL) of wet and waste biomass feedstocks into crude bio-oils and other chemicals has attracted particular attention in Canadian and international clean energy sectors. Until today, very little effort has been employed to address corrosion problems of HTL core components under operation, leading to a significant delay in the construction of industrial-scale HTL plants. In fact, a range of oxygenated, aggressive sulfur and/or chlorinated compounds, as well as organic acids, can be introduced during the conversion at the operating temperature range of 200–400℃, consequently creating highly corrosive environments to the reactor alloys. It is thus important to investigate the performance of alloys exposed to conversion processes to determine the cost-effective construction and long-term safe operation of the HTL plants. In this study, the corrosion resistance of two candidate austenitic stainless steels, including UNS S31000 and UNS S31603, was assessed in a batch reactor containing bamboo feedstock. The corrosion behaviors of the austenitic stainless steels were evaluated using weight change measurement methods and advanced microscopy techniques. To advance corrosion mechanistic understanding, the chemistry of conversion products was also analyzed. This paper is a summary of our most recent results obtained.  

Product Number: 51320-15484-SG
Author: Haoyu Wang, Yimin Zeng, Minkang Liu, Chunbao Charles Xu
Publication Date: 2020
$0.00
$20.00
$20.00
Also Purchased
Picture for 09168 High Temperature Corrosion Under Simulated Biomass Deposit Conditions
Available for download

09168 High Temperature Corrosion Under Simulated Biomass Deposit Conditions

Product Number: 51300-09168-SG
ISBN: 09168 2009 CP
Author: Peter Viklund, Jesper Flyg and Rachel F. A. Pettersson
Publication Date: 2009
$20.00