Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
Unexpected brittle failures of UNS NO5500 drill string parts and non-magnetic drill collars have recently been observed in cases where the UNS NO5500 components were galvanically coupled to carbon steel in concentrated salt solutions at temperatures between ambient and higher than 373 K. Cracking occured preferable at locations with a tri-axial stress condition (roots of threads) and has been ascribed to hydrogen embrittlement.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Hydrogen gas is called to play a key role in the energy transition and initiatives needed for adecarbonization of the economy. Initially, assets for energy storage and transport were developed and qualified for the purpose of the oil and gas industry, especially natural gas. Repurposing of existing assets for the use of hydrogen gas, or creation of new dedicated hydrogen transport and storage infrastructure, is a great challenge for future hydrogen projects. It includes the qualification of steel materials underhydrogen gas environment.
A decarbonized energy system is underway worldwide. The Paris Agreement goal is to keep global warming “below 2 degrees Celsius above preindustrial levels, and to pursue effort to limit the temperature increase even further to 1.5 degrees Celsius.” To achieve this long-term temperature goal, big changes are needed in the ways energy is produced, distributed and storage.
Electroplating is a coating technique used to apply a metallic deposit to alter the properties of the substrate surface. Traditional electroplating involves submerging a part into a tank of electrolyte plating solution and passing a current between the part and an anode, any area that should not be plated must be masked off. Brush electroplating is a portable method of electroplating localized areas without the use of an immersion tank.
Precipitation hardenable nickel alloys N09925, N07718, N09945, N09946 and N07725 provide high strength and excellent sour service corrosion resistance for critical downhole oilfield applications. This family of alloys achieves yield strength minimums ranging from 120 to 160 KSI (827-1103 MPa) and can withstand high temperatures and partial pressures of H2S. The primary strengthening mechanism is the formation of γ’ and γ” nanometer sized particles during an age hardening heat treatment.
Parts produced via additive manufacturing (AM) are being adopted broadly among many industries andused in an array of applications. AM parts are attractive to these industries for several reasons. Complexgeometries that cannot be manufactured using traditional, subtractive methods can be producedadditively.
As long ago as 1973, design codes1 considered the possibility of hydrogen embrittlement due to CP. Between 1986 and 19952-4 the failure of DSS fasteners subjected to CP were reported. These were associated with high ferrite levels in the steel (approximately 70%) combined with precipitation hardening at 475°C to give the high levels of strength desired for fastener applications. At the same time, the susceptibility of DSS welds to hydrogen embrittlement had been reported5. Just like the fastener failures, the hydrogen cracking of welds was associated with high ferrite levels (70%), highly restrained joints and in the case of welds, high levels of diffusible hydrogen.