Search
Filters
Close

Products tagged with 'pipeline'

View as
Sort by
Display per page
Picture for Failure Investigation of Internal Girth Weld Coating Surface Preparation: A Case Study
Available for download

Failure Investigation of Internal Girth Weld Coating Surface Preparation: A Case Study

Product Number: MPWT19-14360
Author: Rashed Alhajri, Yousef Alrayes, Fahad Alhindas, Ghassan Bahamden
Publication Date: 2019
$0.00

Field Guide for Managing Iron Sulfide (Black Powder) within Pipelines or Processing Equipment”

Product Number: 37642-POD
ISBN: 978-1-57590-383-5
Author: Daniel E. Powell, Robert H. Winters, Mark A. Mercer
$190.00

This is a print-on-demand (POD) book that will be produced just for you in 2-5 days after your order. It should arrive at your door in about one to two weeks. However, due to supply chain and logistic challenges currently affecting the industry, it may take longer. Allow three weeks for international orders.

The Field Guide for Managing Iron Sulfide (Black Powder) within Pipelines or Processing Equipment offers practical guidance for corrosion control and operations personnel in managing black powder within their pipeline systems or processing equipment.

This book was written for new corrosion control professionals and operations personnel, who are based at production facilities. It provides straightforward, practical guidance regarding what is “black powder,” and why it may be a concern, field tests to be conducted, follow-up laboratory test that could be ordered, and an approach for using maintenance pigging, coupled with chemical treatments, to remove accumulations of “black powder.” 

It begins with a discussion of what is black powder and identifies health and safety considerations associated with H2S and the presence of black powder, identifying why there may be a concern. 

The Field Guide presents field and laboratory tests typically used to identify the presence of iron sulfide, and then discusses maintenance pigging and/or chemical treatments for removing such particulates. Several case studies are also presented. 

2019 NACE, 6 x 9" trim size, color, perfect bound, 264 pages

 

Field Guide for Managing Black Powder White Paper

 

Download the free white paper summary of this title to see specific areas of focus and discussion

Picture for Impact of O2 Content on Corrosion Behavior of X65 Mild Steel in Gaseous, Liquid and Supercritical CO2 environments
Available for download

Impact of O2 Content on Corrosion Behavior of X65 Mild Steel in Gaseous, Liquid and Supercritical CO2 environments

Product Number: 51320-14433-SG
Author: Xiu Jiang, Dingrong Qu , Xiaoliang Song
Publication Date: 2020
$20.00

CO2 stream in CCS system usually contains impurities, such as water, O2, SO2, NO2, H2S, and other trace substances, which could pose a threat to internal corrosion and integrity of CO2 transportation pipelines. The general and localized corrosion behavior of API 5L X65 mild steel were evaluated using an autoclave both in water-saturated CO2 and CO2-saturated water environments in the presence of varying concentrations of O2. Experiments were performed at 25 °C and 35 °C, 8 MPa and 35 °C, 4 MPa to simulate the conditions encountered during dense, supercritical and gaseous CO2 transport. General corrosion rates were obtained by weight-loss method. The surface morphology of the coupons was examined by scanning electron microscopy (SEM). Results indicated that general corrosion rates at each O2 concentration in CO2-saturated water environment were much higher than those in water-saturated CO2 environment. The corrosion rates did not increase with increasing O2 concentration from 0 to 2000 ppm; instead the corrosion rate reached a maximum with 1000 ppm O2 at 25 °C, 8 MPa and 50 ppm O2 at 35 °C, 8 MPa in water-saturated CO2 environment and 50 ppm at 25 °C, 8 MPa and 100 ppm at 35 °C, 8 MPa in CO2-saturated water environment. However, the change trend of general corrosion rate with O2 content at 35 °C, 4 MPa was different from that in 25 °C and 35 °C, 8 MPa both in water-saturated CO2 and CO2-saturated water environments. Localized corrosion or general corrosion rate of over 0.1 mm/y was identified at each test condition both in a water-saturated CO2 and CO2-saturated water environments. When O2 was added, coupon surfaces were covered by a more porous corrosion product scale. A final series of tests conducted with the addition of 100 ppm and 2000 ppm O2 in CO2 environment with 60% relative humidity (RH) and 80% RH revealed that no localized corrosion was observed and the general corrosion rates were lower than 0.1 mm/y at 25 °C and 35 °C, 8