Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Consistent coating inspections and planned maintenance are essential to asset integrity. Non-existent, delayed, and cursory inspections can allow premature coating breakdown, corrosion, and costly failures. On the other hand, improper maintenance can be ineffective, costly, and wasteful. The challenge involved in executing informative inspections and effective maintenance practices is identifying and understanding the numerous conditions that can contribute to a reduction in the lifecycle of an asset. This paper will discuss some of the aspects involved in identifying coating conditions that are likely to result in failures and developing cost effective coating repair strategies that will extend the life of the asset.
This paper discusses the design philosophy for corrosion inhibitors used for carbon capture, transportation, and storage and the performance testing using rotating cylinder autoclave (RCA) and electrochemical impedance spectroscopy (EIS) methods under CO2 supercritical conditions.
Nonmetallic materials (i.e., elastomers, plastics, and composites) are essential to transport and regulate flow of fluid from production sites to processing sites. In oil and gas production environments, the materials naturally encounter production liquids and gases, including natural gas (CH4, H2), crude oil, formation water, carbon dioxide (CO2), hydrogen sulfide (H2S), in addition to completion brines, organic/inorganic acids, and residual drilling muds. The selection of nonmetallic materials is critical to the structural integrity of oilfield equipment and the safety of rig workers not only in known notoriously hostile environments but also in regular oilfield operations and subsurface water and gas injection.
The Supercritical Carbon Dioxide Corrosion Test Facility is equipped with 3 high-temperature, high-pressure vessels and a gas-phase Fourier transform infrared spectrometer (FTIR) for simultaneous in situ monitoring of key contaminants. This paper outlines the capabilities of this new National Institute of Standards and Technology facility.