Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
Alloy tubes used in petrochemical processing reactor systems are often subjected to oxidizing conditions in high temperature steam such as during de-coking cycles. A new class of heat resistant austenitic cast alloys are being developed that are designed to form protective oxides of alumina.
Alloy tubes used in petrochemical processing reactor systems are often subjected to oxidizing conditions in high temperature steam such as during de-coking cycles. The ability of the alloy to form an adherent and continuous oxide layer is critical to ensure the material resists coking and other high-temperature attack during operation. A new class of heat resistant austenitic cast alloys are being developed that are designed to form protective oxides of alumina. Experimental compositions based on a 25Cr 35Ni base composition with aluminum contents ranging from 2.6 to 3.9 wt% were fabricated via centrifugal casting. An environment of pure steam was constructed in which samples were exposed at temperatures up to 1000 °C. Oxide layers were characterized by surface and cross-sectional electron microscopy and x-ray diffraction. Oxidation charts for determining the thickness of the oxide layer were constructed based upon the time temperature and aluminium composition of the alloy. Optimal times and temperatures for oxidation processing based on each material were determined.
Key words: Stainless Steel, Austenitic Alloy, High Temperature Oxidation, Coking, Alumina
Coking is carbon deposition from a gas phase that is encountered in many reforming, cracking and other high temperature processes. An experimental high temperature coking atmosphere was constructed and used to evaluate the effects of temperature, time and metal surface roughness on the carbon deposition of an alumina forming alloy.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
This paper explains the most common damage mechanisms of high temperature alloys in radiant section such as creep/carburization, thermal fatigue/carburization, and thermal shock.
This article presents findings on type II high temperature (650-800ºC) corrosion in Residue Fluid Catalytic cracking (RFCC) regenerator service (alloy SS304H) and examines the possible strategies for alloy upgrade in RFCC service.