Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
Coking is carbon deposition from a gas phase that is encountered in many reforming, cracking and other high temperature processes. An experimental high temperature coking atmosphere was constructed and used to evaluate the effects of temperature, time and metal surface roughness on the carbon deposition of an alumina forming alloy.
Coking is the process of carbon deposition from a gas phase that is encountered in many reforming cracking and other high temperature processes. Coking in certain petrochemical processes can lead to carbon build up causing reduced process efficiency corrosive attack and degradation of the alloy. Components used in these processes are fabricated from HP alloys that form a chromia-based oxide layer or more recent alloys that form an alumina-based oxide layer to help protect against coking.An experimental high temperature coking atmosphere was constructed and used to evaluate the effects of temperature time and metal surface roughness on the carbon deposition of an alumina forming alloy. Coking conditions were simulated with multiple atmospheres including CO-H2 mixtures at moderate temperatures (e.g. 650 °C) and ethane at higher temperatures (e.g. 900 °C). Carbon deposition was tracked using specific mass change of the samples as a function of exposure times and conditions. Results obtained with the alumina forming alloy were compared to a baseline HP alloy. The materials were analyzed using XRD SEM and optical microscopy to characterize the oxide layer formation carbon deposition layers and carbon attack and changes to base metal microstructure. Raman spectroscopy was used to characterize the carbon deposits. The overall resistance of the alumina-forming alloys relative to the traditional chromia forming composition will be described.
Key words: High temperature corrosion, carbon deposition, cyclic conditions, alumina forming alloy, chromia forming alloy.
Alloy tubes used in petrochemical processing reactor systems are often subjected to oxidizing conditions in high temperature steam such as during de-coking cycles. A new class of heat resistant austenitic cast alloys are being developed that are designed to form protective oxides of alumina.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
This paper explains the most common damage mechanisms of high temperature alloys in radiant section such as creep/carburization, thermal fatigue/carburization, and thermal shock.
This article presents findings on type II high temperature (650-800ºC) corrosion in Residue Fluid Catalytic cracking (RFCC) regenerator service (alloy SS304H) and examines the possible strategies for alloy upgrade in RFCC service.