Search
Filters
Close

NACE Conference Papers

View as
Sort by
Display per page
Picture for Crevice and Pitting Corrosion of Stainless-Steel and Nickel based alloys in Deep Sea Water
Available for download

Crevice and Pitting Corrosion of Stainless-Steel and Nickel based alloys in Deep Sea Water

Product Number: 51319-13123-SG
Author: Erwan Diler
Publication Date: 2019
$20.00

The exploration and exploitation of deep seawater presents promising prospects for many industries. Hence the use of reliable materials resistant to corrosion is required.In natural seawater many parameters can influence the kinetics of corrosion such as: temperature oxygen content biofilm and fouling activity flow rates and hydrostatic pressure.For passive material such as Cr Ni Mo stainless steels and nickel-based alloys the specificity of the above parameters in deep sea environment might have an impact on both initiation and propagation phases of localized corrosion e.g. pitting and crevice corrosion. Currently there are still many uncertainties on the corrosion behavior of these materials in deep seawater; Actually the results obtained in laboratory cannot be extrapolated to deep seawater since the levels measured in deep sea of some of these influential parameters weren’t reproduced accurately in these experimental studies. In parallel field data on the corrosion behavior in deep seawater is rather scarce especially for recent materials such as Lean Duplex Stainless Steel. For example phenomena that are induced by biofilm formation and can increase the localized corrosion risk such as the so-called potential ennoblement i.e. an increase in the open circuit potential (OCP) by about + 0.350 V and the increase of the cathodic current are not yet well documented.In this study 13-Cr Stainless Steel Austenitic Lean Duplex Duplex Super Duplex Super Austenitic Hyper Duplex Stainless Steels and Nickel based alloys were exposed during 11 months at 1020 and 2020 m water depth in the Atlantic Ocean. For comparison non-resistant materials such as carbon steel and 13-Cr were also exposed. The susceptibility to pitting and to crevice corrosion were assessed. PVDF crevice gaskets at two different pressures namely 3 and 20 N/mm² were used to assess the crevice corrosion. Potential monitoring was performed in-situ in order to characterize the formation of the biofilm at the material surface. At each exposure depth the environment was characterized using environmental sensors e.g. temperature flow velocity dissolved oxygen salinity and biofilm sensors.The obtained results allow i) ranking the passive material in terms of corrosion resistance to pitting and crevice in deep water at 4°C ii) comparing biofilm activity and kinetics of corrosion at 1020 and 2020 m depth.

Picture for Crevice Corrosion of Alloy 625 Strake Bands in Sea Water
Available for download

Crevice Corrosion of Alloy 625 Strake Bands in Sea Water

Product Number: 51320-14254-SG
Publication Date: 2020
$20.00
Picture for Critical Review on Sulphide Scale Formation, Removal and Inhibition
Available for download

Critical Review on Sulphide Scale Formation, Removal and Inhibition

Product Number: 51320-14731-SG
Author: Bader Al-Harbi, Norah Aljeaban, Alexander Graham, Ken Sorbie
Publication Date: 2020
$20.00

Sulphide scales, namely iron sulphide (FeS), zinc sulphide (ZnS) and lead sulphide (PbS), are increasingly being encountered in gas/oil wells. These scales can present serious safety concerns, impair well productivity and limit access to downhole tools. There are many published research studies addressing sulphide scale removal and inhibition. However, there is an incomplete understanding of the governing processes of sulphide scale formation and prevention. Furthermore, there are contradictory results in the literature on issues such as the removal procedures and inhibition tests for sulphide scales. Therefore, the main objective of this paper is to critically review the published work on sulphide scale formation, removal and inhibition, to address the factors that control them and to discuss some of the apparent discrepancies in published experimental studies.
The review discusses the formation mechanisms of different sulphide scales in relation to the sources and levels of Fe, Zn, Pb and the sulphide species. The experimental procedures used by different researchers to evaluate sulphide scale dissolvers and inhibitors are described, along with the performance results for the chemistries tested to remove or prevent sulphide scales.
Hydrochloric acid has been shown to outperform rival chemistries for dissolving sulphide scales, however the associated high corrosion rate and H2S generation has necessitated the development of other dissolvers to overcome such drawbacks. Several dissolvers based on chelating agent chemistries combined with catalysts provided high dissolution rates, and the dissolution results and the reaction mechanisms will be discussed in some detail.

Multiple factors have been shown to play a significant role in the inhibition efficiency of sulphide scale inhibitors including pH, salinity, temperature, scale formation sequence and mechanism, and the initial concentrations of sulphide species and scaling metals. In addition, there is a developing understanding of the significance of scale inhibitor consumption in these systems.
Understanding the formation mechanism is essential for accurate interpretation of scale-related issues in the field and for providing the correct treatment strategy. A more complete knowledge of these issues will lead to the further development of reliable procedures for generating dissolution and inhibition results and consequently improving the scale dissolver and inhibitor chemistries themselves.

Picture for Crude Distillation Unit Protection Through Metal Cladding Testing And Implementation With Varied Regional Feed
Available for download

Crude Distillation Unit Protection Through Metal Cladding Testing And Implementation With Varied Regional Feed

Product Number: 51321-16876-SG
Author: Matthew MacWatters; Iain Hall
Publication Date: 2021
$20.00