Search
Filters
Close

Save 20% on select titles with code HIDDEN24 - Shop The Sale Now

Individual Conference Papers

View as
Sort by
Display per page
Picture for Sulfide Stress Cracking Of Low Alloy Steels For Oil And Gas Production: Revisiting The Effect Of Ni As An Alloying Element
Available for download

Sulfide Stress Cracking Of Low Alloy Steels For Oil And Gas Production: Revisiting The Effect Of Ni As An Alloying Element

Product Number: 51321-16549-SG
Author: Dannisa R. Chalfoun/ Ricardo M. Carranza/ Luis A. Aguirre/ Teresa E. Perez/ Mariano Iannuzzi/ Mariano A. Kappes/
Publication Date: 2021
$20.00
Picture for Sulfide Stress Cracking Resistance of High Strength Low Alloy Steels with Varying Nickel Content
Available for download

Sulfide Stress Cracking Resistance of High Strength Low Alloy Steels with Varying Nickel Content

Product Number: 51319-12900-SG
Author: Karthik Krishnan
Publication Date: 2019
$20.00

Low alloy steels are one of the most commonly used material systems in oil and gas fields as they can be heat treated to appropriate strength levels including higher strengths such as 758 MPa (110 ksi) and 862 MPa (125 ksi) minimum yield strength while providing economical solutions for various oilfield conditions. Higher hardenability of low alloy steels is an important factor to ensure proper heat treatment to higher strength levels and this is typically achieved by addition of elements such as Chromium (Cr) Molybdenum (Mo) Nickel (Ni) etc. in the alloy chemistry. It is also essential to ensure adequate toughness in these high strength steels to reduce risk of brittle fracture. Increasing Ni content in the chemistry of low alloy steel can provide increased hardenability while maintaining good toughness when heat treated to high strengths. However the guidelines of NACE MR0175/ISO 15156-2 currently restrict the maximum Ni content to 1% mass fraction and in general recommend use of Cr-Mo type low alloy steels such as 41XX series in sour (H2S) service. This has generally led to exclusion of low alloy steels containing higher Ni such as 43XX series in sour service. In this paper an effort is made to evaluate the sulfide stress cracking (SSC) resistance of common grades of Cr-Mo and Ni-Cr-Mo steels heat treated to high strength using NACE TM0177 Method A testing. This would also assist when comparing the cracking resistance of high strength low alloy steels with greater than 1% mass fraction Ni content to those which are within this limit.Keywords: high strength low alloy steel Cr-Mo Ni-Cr-Mo sulfide stress cracking (SSC) 1% Nickel content

Picture for Sulfide Stress Cracking Resistance of Quenched and Tempered 41XX Low Alloy Steels with 26 HRC Max Hardness
Available for download

Sulfide Stress Cracking Resistance of Quenched and Tempered 41XX Low Alloy Steels with 26 HRC Max Hardness

Product Number: 51324-20958-SG
Author: Karthik Krishnan; Cheng Chau Lum
Publication Date: 2024
$40.00
Picture for Sulfide Stress Cracking Test of TMCP Pipeline Steels in NACE MR0175 Region 3 Conditions
Available for download

Sulfide Stress Cracking Test of TMCP Pipeline Steels in NACE MR0175 Region 3 Conditions

Product Number: 51320-14446-SG
Author: Xin Yue, Weiji Huang, Andrew J. Wasson, Jamey A. Fenske, Timothy D. Anderson, Brian D. Newbury, Doug P. Fairchild
Publication Date: 2020
$20.00

Steel pipelines are sometimes subjected to demanding sour environments resulting from the presence of high H2S contents. Pipeline materials, therefore, must be resilient against sulfide stress cracking (SSC) which is caused by H2S. Beginning in the 1980s, thermo-mechanically controlled processed (TMCP) steels have been widely used for the manufacturing of large-diameter sour service pipelines. The failure of the Kashagan pipelines in 2013 raised concern regarding the use of TMCP steels in sour environments. These concerns arise from the potential for local hard zones (LHZs) to be produced on the surface of the line pipe during TMCP processes, ultimately leading to through-wall SSC failures. In the present study, several X60 - X65 TMCP steels (both with and without LHZs) have been tested under different Region 3 (R3) conditions in the NACE MR0175/ISO15156-2 pH-H2S partial pressure diagram. It can be concluded that the presence of LHZs increases TMCP steels’ sour cracking susceptibility; however, TMCP steels without LHZs pass the SSC tests at even the most severe R3 environments. Traditional HRC or HV10 testing are not able to detect LHZs, and so lower load HV 0.5 or HV 0.1 tests are necessary. For TMCP steels, the current R3 may be further divided into R3-a and R3-b sub-regions. The sour cracking severity of R3-a is less than that of R3-b. Additional actions, like enhanced mill qualification of the TMCP plate, should be considered to ensure that no LHZs exist in steels to be utilized in R3-b environments.  

Picture for Sulfide-Stress Cracking Threshold Stresses and Operational Limits for the Safe Use of UNS S17400 (17–4PH) in Oilfield Services
Available for download

Sulfide-Stress Cracking Threshold Stresses and Operational Limits for the Safe Use of UNS S17400 (17–4PH) in Oilfield Services

Product Number: 51320-14431-SG
Author: Manuel Marya
Publication Date: 2020
$20.00

Stainless steel UNS S17400 (17-4PH) has been successfully used in oilfield services outside the traditional NACE MR0175/ISO 15156 limits for permanent equipment. The exact operational envelops of 17-4PH (HH1150), including the tensile threshold stress, sour gas partial pressure, temperature, and exposure time that enable the crack-free usage of 17-4PH (HH1150) are not well established. For service equipment, NACE MR0175/ISO15156 currently provides exemptions from the tight environmental restrictions of permanent equipment, but instead limits the maximum applied stress to a debatable 60% of the specified minimum yield strength (SMYS). In this investigation, the sulfide stress-corrosion cracking of 17-4PH is revisited through 51 new NACE TM0177 Methods A tests conducted over 240 hours minimum (480hrs in certain cases). Under unrestricted sour gas partial pressures, the threshold tensile stress below which cracking does not occur is between 45% and 60% of the SMYS at ambient temperature. Alloy 17-4PH is also less susceptible to sulfide stress cracking as temperature increases from 70°F (21°C) to 350°F (177°C). Risk of sulfide stress cracking is also greatly mitigated when delta ferrite is controlled. With reduced delta ferrite, as provided by two out of three tested heats, and reverted austenite promoted by both chemical composition and longer aging treatments, no cracking is seen at 60% stress level up to 45psi H2S (0.31MPa); at 45% stress level, this value is increased to 120psi (0.83MPa) based on newly-collected test data. 

Picture for Sulfur/TAN Ratio Effect on Iron Sulfide (FeS) Scale Properties Challenged in Continuous Oil Flow
Available for download

Sulfur/TAN Ratio Effect on Iron Sulfide (FeS) Scale Properties Challenged in Continuous Oil Flow

Product Number: 51319-13490-SG
Author: Gheorghe Bota
Publication Date: 2019
$20.00
Picture for Superhydrophobic and Nanostructured HPHT Stable Polybenzoxazine Nanocomposite Coatings for Oil and Gas
Available for download

Superhydrophobic and Nanostructured HPHT Stable Polybenzoxazine Nanocomposite Coatings for Oil and Gas

Product Number: 51319-13524-SG
Author: Rigoberto Advincula
Publication Date: 2019
$20.00
Picture for Supporting Integrity Management with a CP Digital Twin
Available for download

Supporting Integrity Management with a CP Digital Twin

Product Number: 51321-16401-SG
Author: Cristina Peratta/Robert Adey/John Baynham/Tim Froome
Publication Date: 2021
$20.00
Picture for Surface Hard Zone Phenomenon In TMCP Line Pipe For Sour Service: A State Of The Art Review
Available for download

Surface Hard Zone Phenomenon In TMCP Line Pipe For Sour Service: A State Of The Art Review

Product Number: 51321-16563-SG
Author: Ali Smith/ Carlo Spinelli
Publication Date: 2021
$20.00