Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Low alloy steels are one of the most commonly used material systems in oil and gas fields as they can be heat treated to appropriate strength levels including higher strengths such as 758 MPa (110 ksi) and 862 MPa (125 ksi) minimum yield strength while providing economical solutions for various oilfield conditions. Higher hardenability of low alloy steels is an important factor to ensure proper heat treatment to higher strength levels and this is typically achieved by addition of elements such as Chromium (Cr) Molybdenum (Mo) Nickel (Ni) etc. in the alloy chemistry. It is also essential to ensure adequate toughness in these high strength steels to reduce risk of brittle fracture. Increasing Ni content in the chemistry of low alloy steel can provide increased hardenability while maintaining good toughness when heat treated to high strengths. However the guidelines of NACE MR0175/ISO 15156-2 currently restrict the maximum Ni content to 1% mass fraction and in general recommend use of Cr-Mo type low alloy steels such as 41XX series in sour (H2S) service. This has generally led to exclusion of low alloy steels containing higher Ni such as 43XX series in sour service. In this paper an effort is made to evaluate the sulfide stress cracking (SSC) resistance of common grades of Cr-Mo and Ni-Cr-Mo steels heat treated to high strength using NACE TM0177 Method A testing. This would also assist when comparing the cracking resistance of high strength low alloy steels with greater than 1% mass fraction Ni content to those which are within this limit.Keywords: high strength low alloy steel Cr-Mo Ni-Cr-Mo sulfide stress cracking (SSC) 1% Nickel content
Steel pipelines are sometimes subjected to demanding sour environments resulting from the presence of high H2S contents. Pipeline materials, therefore, must be resilient against sulfide stress cracking (SSC) which is caused by H2S. Beginning in the 1980s, thermo-mechanically controlled processed (TMCP) steels have been widely used for the manufacturing of large-diameter sour service pipelines. The failure of the Kashagan pipelines in 2013 raised concern regarding the use of TMCP steels in sour environments. These concerns arise from the potential for local hard zones (LHZs) to be produced on the surface of the line pipe during TMCP processes, ultimately leading to through-wall SSC failures. In the present study, several X60 - X65 TMCP steels (both with and without LHZs) have been tested under different Region 3 (R3) conditions in the NACE MR0175/ISO15156-2 pH-H2S partial pressure diagram. It can be concluded that the presence of LHZs increases TMCP steels’ sour cracking susceptibility; however, TMCP steels without LHZs pass the SSC tests at even the most severe R3 environments. Traditional HRC or HV10 testing are not able to detect LHZs, and so lower load HV 0.5 or HV 0.1 tests are necessary. For TMCP steels, the current R3 may be further divided into R3-a and R3-b sub-regions. The sour cracking severity of R3-a is less than that of R3-b. Additional actions, like enhanced mill qualification of the TMCP plate, should be considered to ensure that no LHZs exist in steels to be utilized in R3-b environments.
Stainless steel UNS S17400 (17-4PH) has been successfully used in oilfield services outside the traditional NACE MR0175/ISO 15156 limits for permanent equipment. The exact operational envelops of 17-4PH (HH1150), including the tensile threshold stress, sour gas partial pressure, temperature, and exposure time that enable the crack-free usage of 17-4PH (HH1150) are not well established. For service equipment, NACE MR0175/ISO15156 currently provides exemptions from the tight environmental restrictions of permanent equipment, but instead limits the maximum applied stress to a debatable 60% of the specified minimum yield strength (SMYS). In this investigation, the sulfide stress-corrosion cracking of 17-4PH is revisited through 51 new NACE TM0177 Methods A tests conducted over 240 hours minimum (480hrs in certain cases). Under unrestricted sour gas partial pressures, the threshold tensile stress below which cracking does not occur is between 45% and 60% of the SMYS at ambient temperature. Alloy 17-4PH is also less susceptible to sulfide stress cracking as temperature increases from 70°F (21°C) to 350°F (177°C). Risk of sulfide stress cracking is also greatly mitigated when delta ferrite is controlled. With reduced delta ferrite, as provided by two out of three tested heats, and reverted austenite promoted by both chemical composition and longer aging treatments, no cracking is seen at 60% stress level up to 45psi H2S (0.31MPa); at 45% stress level, this value is increased to 120psi (0.83MPa) based on newly-collected test data.
Naphthenic acids and sulfur compounds are important corrosive species contained in low quality crudes and can cause significant equipment damages when such crudes are processed. Although the two corrosive species have a synergistic effect at high temperatures their corrosion products can influence the extent of the damage. Thus the iron sulfide (FeS) scales formed as sulfur reacts with iron can hinder the NAP acid diffusion to the metal limiting their corrosive effect. The FeS scales properties are influenced by different factors such as the types of sulfur compounds in oil (sulfides disulfides mercaptans thiophenes) NAP acids interactions temperature flow conditions - all factors that are difficult to control. This experimental work intended to evaluate the properties of FeS scales formed from model sulfur compounds (sulfides and mercaptans) in interaction with NAP acids using the “pretreatment – challenge” test protocol. According to this protocol FeS scales were formed on metal samples from mercaptans/mercaptans and sulfides on different ratios/concentrations in the presence of NAP acids at high temperature.Further preformed scales were exposed to a constant NAP acid attack under high temperature and continuous flow conditions. Samples metal losses and scale SEM/EDS analysis were used to characterize the protective properties of FeS scales.Keywords: sulfur model compounds naphthenic acid corrosion high temperature
Pre-salt carbonate reservoirs in the Santos Basin are a challenge for offshore well design andconstruction. Located under a salt layer of around 2000 m, they generate large amounts of carbon dioxide associated with oil and gas production. To avoid releasing millions of cubic meters of CO2 into the atmosphere, the gas is reinjected or used for artificial lift purposes, where its fraction can reach up to 80% of the total composition.
Polybenzoxazine chemistry and polymerization have enjoyed tremendous growth due to its versatility in chemistry and a number of advantages in properties for high-temperature applications compared to epoxy PU PF resins. This is due to a wide variety of monomers and telechelic structures that can be incorporated in one-pot reactions and curing. We have widely reported the preparation of nanostructured polybenzoxazine (PBZ) nanocomposites prepared with nanoclay nano-silica and graphene to obtain very robust and superhydrophobic coatings that have resulted in efficient anti-corrosion properties and oil-water separators including anti-icing properties. The monomers are prepared by simpler chemistry enabling additives and other preparation protocols that lead to robust coatings. The addition of telechelic polybutadiene and the use of polyaniline as part of the interpenetrating network (IPN) and semi-interpenetrating network (SIPN) composition results in robust and very conformal coating compositions. In addition we have investigated PBZ-Epoxy copolymer compositions which are highly compatible with commercial formulations. Excellent adhesion properties to substrates even at higher temperature (HT) operations may enable these type of materials to be applied in more demanding conditions for the upstream midstream and downstream application in the oil and gas industries.
Surface cleanliness has been measured visually for the past 30 years using SSPC –VIS- 1 (ISO 8501-1) reference photographs. This method, while recognized as the industry standard, does have its disadvantages. It is deemed a subjective measurement rather than objective and is vulnerable to human error.
Coating performance is related to the profile height on a steel surface. Three types of devices are available to take measurements of this surface profile: replica tape, depth micrometers fitted with pointed probes, and stylus roughness testers. This paper presents results from a recent analysis of measurements taken by the three device types on steel blasted with an assortment of blast media and proposes a new method of depth micrometer measurement called average of the maximum peaks.