Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Carbon capture and storage (CCS) represents to traditional industrial emitters a critical transitional technology to globally manage greenhouse gas emission, meet the latest carbon net-zero ambitions, and continue the commercial use of fossil fuels. In CCS, anthropogenic CO2 is captured near emission, treated, compressed, transported (usually by steel pipelines), injected underground through casings, tubings, and completion equipment, and finally permanently stored into saline formations, aquifers, depleted (abandoned) reservoirs, or un-mineable coal seams. [1] Depending upon emitters, the injected CO2 is either near or in a dense state (i.e., indistinctly including a supercritical phase and potentially liquids) having various impurities.
In many industrial applications such as oil and gas production, mining, and renewable energy systems such as concentrated solar power (CSP), solid particles impact the walls of the pipeline, piping components, and equipment resulting in wear and degradation of the component material. Erosion is the dynamic process of removing material from a solid surface due to the repeated impact of solid particles. When a single solid particle impacts the surface, the material deforms, and eventually, the material is removed upon successive impacts of particles.
Environmental assisted fatigue, also known as corrosion fatigue, is a well-known degradation phenomenon in structural materials that may develop as a consequence of long-time exposure of components to cyclic loads at the presence of an aggressive environment. This phenomenon constitutes an increased environmental risk for fatigue initiation in many industrial applications. One such application is the piping system in a nuclear power plant where the structural material is subjected to an aggressive water environment. Here, the cyclic loads arise from thermal fluctuations and mechanically induced vibrations.
Dry abrasive blast cleaning is a commonly used surface preparation method to achieve the necessary surface cleanliness and roughness for the application of high-performance protective coatings. The effectiveness of abrasive blast cleaning depends on various factors, and some studies have indicated that the blasting abrasive used to clean the surface is crucial for the performance of the coating. The previous work evaluated the performances of two liquid-applied epoxy pipeline coatings (coating A and coating B) applied to 15 different surfaces.
An innovative thermoplastic type of coating material based on pure isobutene homopolymer was investigated to determine whether it would be fit for purpose in CUI services at low and moderate temperatures up to 120 °C. This polymer is commonly called Polyisobutene (PIB) and has a unique set of properties that are beneficial for protecting metallic structures from corrosion. Polyisobutene is a polyolefin with a chemical structure similar to Polyethylene (PE) and Polypropylene (PP). One of the major differences is that PE and PP are solid materials with a high degree of crystallinity, whereas PIB does not have a crystallization or melting temperature. PIB has a glass transition temperature (Tg) below – 60 °C which indicates that the polymer is a liquid above this temperature.
Spent nuclear fuel (SNF) is currently stored in stainless steel dry storage canisters (DSCs) contained within concrete cask systems with passive ambient air cooling. These systems are emplaced, either horizontally or vertically, at independent spent fuel storage installations (ISFSIs), located at utility reactor sites. The ambient air introduces moisture, aerosolized salt particles, and dust to the canister surfaces. The composition of the aerosols depends on geographical factors, such as proximity to the ocean,industrial area, rural areas, and transportation corridors that use road salt for winterization.
Corrosion under insulation (CUI) is among the key damage mechanisms in the hydrocarbon industry which mainly manifests localized corrosion on thermally insulated equipment, tanks, piping, and pipelines. CUI is a highly frequent degradation in the oil refining facilities where reportedly 40-60% of failures in the piping result from CUI. In addition, small bore piping (i.e., nominal pipe size, NPS < 4 inch. or 100 mm) are even more prone to CUI and reportedly up to 81% of failures in these piping caused by CUI.