Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Many assets utilized for the processing, storage, and transportation of products are owned by companies operating in the petrochemical sector. Components such as pipelines, pressure vessels, and aboveground storage tanks (AST) are examples of assets. Because of their complexity and the number of components they include, these assets need to be inspected and subjected to nondestructive testing (NDT) at regular intervals.
Geothermal energy is an excellent source of renewable clean power generation, as well as for heating and cooling. Unlike other renewable energy sources, it is unaffected by local climate conditions. However, the heat exchangers used in geothermal power plants are under constant threat of scale formation and corrosion due to the harsh operational conditions to which they are exposed. Therefore, surface modifications to heat exchanger materials, for example through coatings, are necessary to improving the efficiency and durability of geothermal plant.v
In the oil and gas industry, solid metal equipment such as pipelines, pressure vessels, heat exchangers and valves are susceptible to surface cracks and discontinuities attributed to cyclic loading, process environment and severe operating conditions. These anomalies affect the safety, structural functionality, reliability, integrity and life cycle of the equipment. They could lead to catastrophic incidents if not detected timely, evaluated, monitored and properly repaired.
The increased use of high-performance fiber-reinforced polymer (FRP) composites in aerospace, marine, alternative energy, civil, and architectural projects has presented challenges. Defects in composite parts require thorough investigation to ensure compliance with safety requirements and overall structural integrity.
This paper focuses on the advancements of FRP composites and their specific applications in structural engineering, with a particular emphasis on Premier Composite Technologies.
The Brazilian cost of corrosion was estimated at 3% of the GPD in 2018, that percentage is equivalent to approximately $US 49 billion, according to an ABRACO(1) journal released in 2020.1 It is estimated that from this cost $US 19 billion could have been saved through anticorrosive actions. In another research conducted by the EPRI(2) the results showed that at least 22% of corrosion costs could be avoided through adequate mitigating actions.2
The Brazilian cost of corrosion was estimated at 3% of the GPD in 2018, that percentage is equivalent to approximately $US 49 billion, according to an ABRACO1 journal released in 20201. It is estimated that from this cost $US 19 billion could have been saved through anticorrosive actions. In another research conducted by the EPRI2 the results showed that at least 22% of corrosion costs could be avoided through adequate mitigating actions2.
Corrosion of aircraft costs the U.S. Department of Defense (DoD) billions of dollars annually, increases demand on labor, degrades operational readiness, and is a safety issue. Coatings are the most effective means of protection from corrosion, but with time, mechanical and environmental stresses will degrade and eventually breach the coating. For a pristine structure, the coating system reacts primarily to dynamic moisture, temperature, and mechanical loads that can vary over multiple time scales.
A building, partially clad in fluoropolymer coated aluminum panels, was observed to have an aesthetically unacceptable appearance while still under construction. Once installed on the building, many of the panels exhibited a vertical streaked appearance under certain conditions. When the panels were at ground level, or when the sun was bright, the streaky appearance was not noticeable. However, in conditions of low light, such as during early morning, dusk, or on cloudy days the streaky appearance was reported to become apparent. A visual mock-up, consisting of multiple coated panels that had been approved by the architect as a guide to the anticipated appearance were also present on-site as a reference. This visual mock-up was used as a reference for acceptable appearance of the coated panels.
In recent decade, the applications of DSS have significantly increased in oil & gas industry, due to their attractive properties compared to austenitic grades with similar corrosion resistance. The DSS products exhibit a better resistance to pitting, stress corrosion cracking and higher mechanical properties compared to other austenitic stainless steel grades. The microstructure of these materials consists of approximately 50% austenite (γ) and 50% ferrite (α) phases, obtained by means of a solution heat treatment.