Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.

During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.

Search
Filters
Close

The Impact of Ultra-Low Temperature Sandstone Reservoirs on Scale Inhibitor Retention

Issues faced by operators with low temperature sandstone reservoirs of only 40°C and 54°C and challenges these low temperatures brought, including high MIC for sulphate scale control and poor chemical retention & release properties during the reservoir condition corefloods.

 

Product Number: 51317--9107-SG
ISBN: 9107 2017 CP
Author: Myles Jordan
Publication Date: 2017
$0.00
$20.00
$20.00

Control of inorganic scale within oilfield production wells via the scale squeeze process is well documented. The life time of the squeeze treatment is dictated by the cumulative volume of produced water flowing through the treated interval until the minimum inhibitor concentration (MIC) of the scale inhibitor is reached. Inhibitor chemicals with strong retention and low MIC values have been developed deployed and for many years phosphonates and polymers containing phosphonate functional groups have been widely used.This study looks at the issues faced by an operator with low temperature sandstone reservoirs of only 40C and 60C the challenges this low temperature brought which include high MIC for sulphate scale control and poor chemical retention & release observed during the reservoir condition corefloods. These findings will be compared and contrasted with two other higher temperature (72C and 95C) sandstone reservoirs where phosphonates and phosphate ester chemicals have been evaluated and deployed in the field.The finding from this detailed coreflood study and review of previous experimental/field deployed scale squeeze treatment data shows that phosphonates work very well at elevated temperatures at and above 70C where their stronger retention and excellent release profiles makes them a favored chemical for such treatments however at lower temperatures these molecules are not well retained on the rock and it is the phosphate ester chemicals that are more effective and provided the longer squeeze life. Comments on the interaction/performance of polymer scale inhibitor will also be made for these low temperature conditionsThe implication of these finding clearly show that phosphate esters offer the potential for extended squeeze lifetime in the <60C sandstone reservoirs which are being developed in Northern Norway (Barent Sea) and the shallow depth cool reservoirs being developed in offshore Brazil.

Key words: Low temperature, scale inhibitor, squeeze, lifetime, phosphonate, phosphate ester

Control of inorganic scale within oilfield production wells via the scale squeeze process is well documented. The life time of the squeeze treatment is dictated by the cumulative volume of produced water flowing through the treated interval until the minimum inhibitor concentration (MIC) of the scale inhibitor is reached. Inhibitor chemicals with strong retention and low MIC values have been developed deployed and for many years phosphonates and polymers containing phosphonate functional groups have been widely used.This study looks at the issues faced by an operator with low temperature sandstone reservoirs of only 40C and 60C the challenges this low temperature brought which include high MIC for sulphate scale control and poor chemical retention & release observed during the reservoir condition corefloods. These findings will be compared and contrasted with two other higher temperature (72C and 95C) sandstone reservoirs where phosphonates and phosphate ester chemicals have been evaluated and deployed in the field.The finding from this detailed coreflood study and review of previous experimental/field deployed scale squeeze treatment data shows that phosphonates work very well at elevated temperatures at and above 70C where their stronger retention and excellent release profiles makes them a favored chemical for such treatments however at lower temperatures these molecules are not well retained on the rock and it is the phosphate ester chemicals that are more effective and provided the longer squeeze life. Comments on the interaction/performance of polymer scale inhibitor will also be made for these low temperature conditionsThe implication of these finding clearly show that phosphate esters offer the potential for extended squeeze lifetime in the <60C sandstone reservoirs which are being developed in Northern Norway (Barent Sea) and the shallow depth cool reservoirs being developed in offshore Brazil.

Key words: Low temperature, scale inhibitor, squeeze, lifetime, phosphonate, phosphate ester

Also Purchased