Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
HISTORICAL DOCUMENT. Specification, selection & use of sensors for monitoring atmospheric corrosion. These sensors - based on electrochemical techniques - provide continuous records of contaminants, corrosion rates, or coating condition.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
The purpose of this document is to provide instructions on the use of electrochemical sensors for monitoring atmospheric corrosion. These sensors are used to measure thin film electrolyte conductance, corrosion current or coating condition over long periods. This method permits the instantaneous evaluation of corrosion current that can be related to specific environmental conditions in real time. The instantaneous corrosion current measurements are not accessible using electrical resistance sensors or mass loss techniques. The technology described in this document complements other standard techniques for assessing atmospheric corrosion such as mass loss coupons, electrical resistance sensors or coated test panels (see ISO 8407 and ISO 4628-8). These continuous records of material condition can be useful for studying atmospheric corrosion, evaluating materials or managing assets.
This paper presents the diagnostic work undertaken to determine the cause of failing coating and spalling block on the exterior of a commercial building in northern Illinois. The field assessment methods used to diagnose the problems including non-destructive and destructive methods for determining moisture content in the masonry, infrared thermography, and visual assessments are described.
Although the form and function of a well-designed building are important, it is the long-term performance and durability of a building and its components that will be important to the owner(s) and occupants. Therefore, during the design of buildings, the selection of the appropriate materials and understanding the long-term performance of the specified materials exposed to various site-specific environmental conditions is critical in avoiding the potential “failure by design”. The case study presented will focus on the coating failure by design, that could have been avoided by the original design and construction team and resulted in costly litigation and eventually the complete removal of a key architectural element on two high-rise condominium buildings located along the Florida coastline
It was requested that exposure testing be completed on various high durability coatings products to evaluate gloss retention and color changes. Various systems were chosen to test, some with clear coats and some without. They were placed in cyclic UV/condensation testing, concentrated natural sunlight testing in Arizona, and outdoor exposure testing in South Florida.
As CORROSION journal celebrates 75 years of corrosion mitigation and control research in 2019, we offer a selection of articles by decade. These articles remain the most viewed research articles of their respective decade, highlighting important topics, experimental methods and discussions surrounding the pertinent research of the day, and they continue to provide intelligence, perspective and insights for today’s corrosion research.
A life cycle cost assessment led to the selection of DSS for field gas gathering network composing of more than 200 miles of pipelines. Buried portions are provided with external coating. Furthermore, due to high chloride content in the soils, the external corrosion threat was mitigated through the use of an external coating supplemented with CP.
As there was no industrial reference covering onshore DSS pipeline CP criteria, lab testing was conducted to establish the criteria and confirm if the risk of hydrogen embrittlement is managed appropriately. This is further evaluated with field data to confirm pipelines integrity.
Inorganic zinc (IOZ) silicate coating was previously applied to partially fabricated low alloy, 21/4 Cr-1MoV, high temperature, hydrogen, reactor vessels for long-term storage corrosion protection prior to final welding and post weld heat treatment (PWHT) at 690-720°C (1274-1328°F). The need for complete coating removal to mitigate the known embrittlement and weld cracking that can occur after welding and PWHT led to the development of a novel, environmentally friendly method to remove IOZ to trace levels below 1 ppm.
Abrasive blasting operations used for paint and surface coatings removal are essential for the maintenance of the ships, aircraft, and land vehicles of the United States Armed Forces as well as use industries such as oil & gas, power generation, construction, mining, and infrastructure, among others. Abrasive blasting nozzle design is rudimentary and noise levels produced during abrasive blasting operations in shipyards, maintenance facilities, and factories for removing paint and surface coatings often exceed exposure limits put in place by Occupational Safety and Health Administration (OSHA). Reducing a worker's occupational noise exposure is imperative from a safety and economics perspective.
Epoxy coatings provide excellent physical barrier to the steel reinforcing bars that are embedded in reinforced concrete and prevent chloride ions from reaching the bar surface under corrosive environment. Such protection primarily depends on the integrity of the coatings, which can often be damaged during construction. Repair of epoxy coatings can be time consuming and expensive. Therefore, it is important to determine a critical amount of damage that can be tolerated without compromising the capacity of the coatings to provide corrosion protection.
After decades of use, it is becoming evident that the standard practice ASTM D2992 and referenced Standard test Method ASTM D1598 may not be producing the intended results.
This paper is a case study on a 100% solids epoxy penetrating sealer being used as a tie coat between a tightly adhered latex acrylic and aliphatic polyurethane.