Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
The objective of this research was to determine the resistance of frequently used sealing materials in fuels and heating oil with and without admixtures such as E10, diesel fuel with 5 % biodiesel, non-aged and 2 year aged B10 (heating oil with 10 % biodiesel), pure diesel, standard heating oil and premium grade fuel Super plus at 20 °C, 40 °C and 70 °C.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Jerrycans made of a high density polyethylene (HDPE) were filled with E85 and biodiesel and then exposed to temperatures of 20 °C (68°F) and 40 °C(104°F) for 5 years to study the interaction between HDPE and permeation barriers.
To investigate the corrosive impact of fuels with biogenic components by performing corrosion fatigue tests on notched and un-notched specimen of stainless 17% chromium steel 1.4016 (X6Cr17) AISI430 in air and biofuel E85 (fuel with 85% ethanol added).
A biofuel can be described as any fuel where bio-based renewables like oils and fats, organic waste, crops like corn or sugar cane, and algae, etc., are used as precursor feedstocks.
Increasingly, the production of biofuels from biomass is very much part of a global impetus for an energy transition to a “carbon neutral” world. The goal is to reduce the carbon footprint and ensure that sustainable energy from bio-based feedstocks realistically lowers reliance on energy produced from fossil fuels.
The most dangerous phrase in business, “We’ve always done it that way”, has never been more apt. It cannot be assumed that these linings, with proven track record in storage and processing fossil fuels, will provide the same level of asset protection in biofuels storage and biorefining processes. Likewise, the use of “generic” equivalents offers greater risks as the technology used does not define the performance.
In Corrosion/2021, the authors introduced a molecular mechanistic model that quantifies and predicts simultaneous naphthenic acid and sulfidation (SNAPS) corrosion rates. During Corrosion/2022, we presented the mechanistic corrosion prediction framework describing the molecular basis of the model’s reactions, kinetics, and mass transport of reactive organic sulfur compounds (ROSC) to vessel walls. In this molecular model, sulfidation corrosion is calculated for direct heterolytic reaction of ROSC with solid surfaces.
Slow strain rate (SSR) test method for screening and evaluating susceptibility of steels to ethanol Stress Corrosion Cracking (SCC). Relevent to the distribution of fuel ethanol.