Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
Laser cleaning has been an effective tool in manufacturing and industrial applications for over 20 years. Cleaning, as well as cutting and welding, has shown vast improvements in repeatability and precision with the use of laser technology [4]. Previous bonding techniques such as mechanical fixturing and welding can be inconsistent and cause issues like increased structural weight, decreased structural integrity, galvanic corrosion, and many more potential failures [5]. Laser cleaning may propose a viable option for adhering materials to reduce weight and increase repeatability. Welding practices continue to develop to reduce both weld thickness and porosity. Porosity in welds is typically caused from failure to prepare the surface adequately [1]. Failures in both welding applications and adhesive bonding applications can be reduced with the use of laser technology.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
HISTORICAL DOCUMENT. Test for the presence of surface soluble salts before application of a coating system. Previously coated or eplacement substrates only. Does not include allowable limits of soluble salts.
Coating industry trends has driven increased use and interest to develop more efficient and durable thermal insulative coatings. The key areas for this expansion are to reduce corrosion under insulation, increase occupational safety and reduce energy loss. Key features of these water-based coatings are low thermal conductivity, high hydrophobicity and adhesion along with an emerging interest to have greater heat resistance and stability. This paper will introduce a new water-based silicone hybrid resin to accompany the two novel microporous composite granules; one with high thermal insulative efficiency and the other, a pure hydrophobic synthetic silica pearl shaped filler to optimize thermal insulation efficiency as well as offering mechanical stability and reduced cracking in these highly filled coatings. The new platform offers the formulator options to leverage all new technologies together or separately when a compatible binder is needed to increase thermal heat stability and flame-retardant performance. Coatings and formulating details will be highlighted with thermal degradation of binders, surface temperature comparison for “Safe Touch” coatings, thermal conductivity (Lambda - mW/mK), contact angle measurements along with fire retardance test and direct flame testing using various thermal insulation fillers.
In Jan 2023, during reformer shutdown; one of the reformer inspections revealed cracks at hot collector and pigtail. Most of the cracks were on the surface and some of the cracks were through. Pigtail sample was removed, and it was taken for failure investigation to confirm the failure root cause.
The effects of corrosion are wide-spread and widely known. From construction to transportation and everything in between corrosion is a result of environmental effects on the metals we use to build. Corrosion may be controlled, however, through the use of inhibitors as an on-going treatment in order to effectively stall the act of corrosion.
SCC of Ni-base filler metal (FM) 82 has been reported in the nozzles and other components in Light Water Reactors (LWRs). The typical characteristics of stress corrosion cracking (SCC) of Ni-base alloys are a long incubation time followed by slow propagation, which can suddenly transition to fast propagation. Whilst there has been considerable effort expended to develop an SCC mechanism that can explain and predict SCC in Alloy 600, fewer studies have investigated SCC of FM 82. The Preferential Intergranular Oxidation (PIO) SCC mechanism of Alloy 600 proposed by Bertali et al. which is an evolution of the Selective Internal Oxidation SCC mechanism proposed by Scott and Le Calvar is considered one of the most representative primary water SCC mechanisms for Alloy 600.