Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
Corrosion in Mooring systems for permanently moored floating production units has been identified as a problem area by authorities as well as industry. A Joint Industry Project (JIP) initiated by the Bureau of Safety and Environmental Enforcement (BSEE) with participation from major global oil and gas operators as well as equipment suppliers was established in 2014 to review the problem area. 1 Studies performed as a part of this program have shown that especially mooring chains located in tropical waters have shown signs of rapid corrosion, both general and localized with corrosion rates significantly larger than those specified in design standards. Increased corrosion allowance, as well as increased inspection requirements, have been recommended and corrosion has been reported as the leading cause for pre-emptive replacement of mooring.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Only a few researchers have studied the effect of carbon fiber repair on corrosion processes. The main protective effect is the "protective barrier" which is sometimes called passive protection against corrosion, comparable to some techniques such as anticorrosion coatings of concrete structures. Indeed, CFRP materials, applied as external reinforcing material on reinforced concrete structures form a protective barrier against the penetration of moisture and pollutants such as chlorides or carbon dioxide.1.2.3.4.5 Apart from this impermeable barrier action, it has been found in these studies that the confinement of CFRP concrete has a positive influence on the onset of corrosion and on its velocity. Very little research has investigated the coupling between mechanical reinforcement and impressed current system.6,7,8
This case study involves an NPS 36, 107 km long pipeline (Pipeline A) installed in 2016. The subject pipeline is collocated with an NPS 30 pipeline constructed in 1999 (Pipeline B), for the entire route, and two additional pipelines near the start of its route (Pipelines C and D), all owned by the same operator.
Thermal insulation is a material that restricts the flow of heat. Heat spontaneously flows from a high temperature region to a low temperature region, and the greatest heat flow occurs through the path of least resistance. For this reason, thermal insulation is used as a barrier between two bodies at different temperatures either to reduce heat loss from the hotter body or to reduce heat entry into the cooler body.
UNS S209101, also known as XM-19 by ASTM A2762, is a nitrogen-strengthened austenitic stainless steel with high strength and excellent corrosion resistance. Besides nitrogen (N) it also contains higher amounts of chromium (Cr), nickel (Ni), manganese (Mn), and a similar molybdenum (Mo) content compared with UNS S31603, as well as small additions of niobium (Nb) and vanadium (V). High contents of Cr, Mo and N confer this stainless steel high localized corrosion resistance. Mo, Mn and Cr increase the nitrogen solubility in iron alloys.
Knowledge of the localized corrosion environment on a metal substrate can provide the critical link between atmospheric data and corrosion morphology and can enable the formation of a framework to predict service life as a function of environment. Over the last few decades the analytical characterization of bare metal surfaces undergoing atmospheric corrosion has improved, resulting in a more complete understanding and consideration of the environmental parameters involved. However, the corrosion processes and the role that the environmental parameters play in what is a multiphase system is rather complex involving chemical reactions and equilibria, ionic transport phenomena, and gaseous, aqueous and solid phases.
Measuring the severity of corrosion on a specific alloy is often accomplished via mass loss using ASTM G-1. These processes work well and provide high fidelity data for many materials, especially steels. However, recent internal findings and disclosures from other research groups have highlighted a potential issue with using mass loss techniques to measure the damage on some aluminum alloy surfaces.
The Wafra Joint Operation (WJO) Oilfield is located in the central-west part of the Kuwait-Saudi Arabia Neutral Zone. The Wafra oilfield reserves were first discovered and wells drilled in 1954. This field produces two types of crude oil, Ratawi (light oil) and Eocene (heavy oil), with average water cut of 8085%. During operation, the production wells produce the oil emulsion through mostly coated flowlines to sub-centres (SC) where the sour oil, water and gas are separated. The facility has two gathering fields; Eocene and Ratawi. Eocene has 2 phase separation, whilst Ratawi has 3 phase separation. The sour gas is either flared or flows to the Main Power Generation Plant, whilst the oil is processed to the Main Gathering Center (MGC). The produced waters (PW) are routed to the Pressure Maintenance Plant (PMP).
Organic corrosion inhibitors (CI) have widespread use in the crude oil refining industry for corrosion protection and mitigation.1 An effective corrosion inhibitor is a chemical substance that is applied in low concentration into a stream which suppresses or mitigates a corrosion mechanism.,2,3,4 Inhibitors can be classified into two classes: adsorption or film-forming with organic inhibitors falling under the adsorption class. In this type of inhibitor a self-assembled structure is formed, where an array of hydrocarbon tails extend away from the metal surface and the polar groups (e.g., N in amines) chemisorb onto the metal surface.2 Over the years, certain classes of inhibitors have been established as industry standards to confront specific corrosion mechanisms encountered throughout the refinery process. Examples include, filming and neutralizing amines used in crude units to combat aqueous corrosion; polysulfides used in FCCU to combat hydrogen blistering, cracking and embrittlement; P-based chemistries to combat naphthenic acid corrosion.5
The crude oil produced by fracking or hydraulic fracturing method are high in sulfur content (0.5%)1. The vast majority of vessels that are used in the petrochemical industry to store and transport materials are constructed using Carbon steel. Coating linings used for corrosion protection inside of vessels and tanks must perform under severe conditions such as an exposure to corrosive gasses ( H2S) and carbon dioxide as well as high temperatures, high pressures and often must withstand the cold wall effect and rapid decompression.
Different refiners have a variety of procedures in place for hydroprocessing reactor and reactor system shutdowns, depending on the scope of the work to be performed during the downtime. If activities are to be performed inside the reactor (e.g. inspection, maintenance, catalyst changeout, etc.) such that the reactor must be opened to air, shutdowns must include steps to address the various hazards. These same steps must also be applied to associated process equipment related to the reactor system susceptible to similar hazards and damage mechanisms.
External corrosion on buried pipelines can result in gradual and usually localized metal loss on the exterior surface of failure coating, resulting in reduction of the wall thickness of the metallic structure. Indirect technologies, such as DC basis (i.e. DCVG, CIPS) have been able to detect and pinpoint two conditions in the pipeline, intact and holiday (active surface or coating anomaly) with good confidence. Classic DC methodologies monitor and characterize the state of the coating and effectiveness of cathodic protection by using transfer function principle (i.e. resistance). The formation of an electrochemical cell, such as buried coated pipeline with cathodic protection (steel in electrolyte) is formed at macro scale conditions [1-2]. The expected damage evolution of the coated pipeline includes the electrolyte (soil+water) uptake within the coating