Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
Intergranular Stress Corrosion Cracking (IG-SCC) plays an important role as one of the most recognized degradation phenomena in Nuclear Power Plants (NPP). SCC is both multi-disciplinary with many parameters that are dependent on each other. This study was based on developing a multi-physics finite element model for IG-SCC prediction in unirradiated structural materials for non-pressure vessel components in NPPs. The environment considered was boiling water reactor (BWR) with normal water chemistry (NWC), containing approx. 200ppb oxidant (O2 + H2O2) and varying aggressive ions Cl-. The model was focused on the slip-oxidation model, where a crack is advancing by anodic dissolution, passivation, and oxide rupture at the crack tip. The rupture of the oxide film is due to the constant stresses applied creating slips in the bulk material which fractures the oxide.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Thermally insulated pipelines have wide networks globally that are used to transport various chemicals, hydrocarbons as well as steam. CUI (corrosion under insulation), external SCC (stress corrosion cracking) and corrosion fatigue are some of the prominent damage mechanisms which may occur on the external surface of insulated pipes/ pipelines that in turn jeopardize the long-term integrity and operations. The moisture is undoubtedly the key contributor behind the above said external degradations of metallic surfaces and can come under thermal insulations via seepage and/ or condensation. Various factors that influence the extent of moisture intrusion are the design of insulated system(s), type and age of insulation, operating temperature of pipeline(s) as well as environmental and neighborhood conditions.
Microbiologically influenced corrosion (MIC) is a key oilfield problem associated with microbial activity, and can be described as the accelerated corrosion of surfaces (usually concrete or iron/steel) by the biological action of naturally present or externally introduced microorganisms. MIC incidents can occur anywhere that a system is exposed to the environment, where microorganisms can enter often via fluid flow and colonize various surfaces for their own growth. MIC is a persistent concern in practically any upstream, midstream, or downstream system where water could be present for microorganism colonization, including topside, subsurface, aerobic (with oxygen), anaerobic (without oxygen), and at extreme temperatures and salinities.
There are mainly two commonly adopted criteria for controlling CP. One is the polarized potential criterion and the other one is the polarization shift criterion1. These criteria are not the true criterion for cathodic protection; they are the surrogate criteria (see below). The polarized potential criterion is to control the instant-off structure-to-electrolyte potential within a specified range. For example, the instant-off potential should be between -0.85 and -1.2 V vs Cu/CuSO4 (VCSE) for pipelines buried in soil. The polarization shift criterion is to control the polarization of a CP-protected structure to a given minimum value and this minimum value is usually 100 mV. The polarization is determined either by the difference between the corrosion potential of the structure measured before CP is applied and the instant-off structure-to-electrolyte potential, or by the difference between the depolarized potential of the structure and the instant-off structure-to-electrolyte potential.
Steel rebars in concrete structures are usually protected from corrosion by a thin layer of passive film, which is formed due to the high alkalinity of concrete pore solution.1-2 However, this protective passive film could be damaged by penetration of chloride into concrete structures in marine environments or exposure to the use of de-icing salt for the removal of snow and ice in winter times.3 Penetration of chloride would impair the passive film locally and initiate pitting corrosion.
Corrosion of metallic structures is a ubiquitous problem in industries such as power generation, oil and gas, pulp and paper, metals processing etc. which also results in significant financial losses. According to the National Association of Corrosion Engineers (NACE) International report, the global cost of corrosion was ~ 2.5 trillion USD in 2013 - close to 3.4 percent GDP of the entire world. The use of corrosion inhibitors is one of the most effective and economical ways to mitigate corrosion of metal and alloy components. Corrosion inhibitors are substances that are added in small quantities in corrosive media to protect metal and alloy components from corrosion.
The exposure environment of an engineering material quite often has a large impact on how that material behaves over time. Environments are distinguished by differences in meteorological patterns, geography, salinity, Ultraviolet (UV) radiation, etc1-3. Thus, the degradation of various materials scales proportionately to the characteristics of the exposure site, with more severe sites leading to worse degradation. Developing an understanding of how the local environment impacts the corrosion rates of metals and the deterioration of anti-corrosion coatings is critical for informing asset maintenance schedules and lifetime predictions4.
The alloys used as clad material for this study are members of the so-called “C-family”. It consists of Ni-Cr-Mo alloys, which are known for combining the corrosion resistance of Ni-Cr alloys in oxidizing media with corrosion resistance of Ni-Mo alloys in reducing media. As a result, these materials have proven to be extremely durable in a wide range of highly aggressive media. The development of these materials started in the 1930s with Alloy C. This alloy showed remarkable corrosion resistance in a wide spread of media, low sensitivity for pitting or crevice corrosion and virtual immunity to chloride induced stress corrosion cracking.
The sulfide stress cracking (SSC) resistance of carbon steels and other alloys is commonly addressed through testing according to NACE TM01771 or NACE TM03162. The Method A of the first standard is focused on tests using uniaxial tensile (UT) while the second standard considers 4-point bend (4PB) type of loads. A common way of qualifying a material according to these standards is the absence of failure of the specimens or SSC crack initiation at the surface of the material after a test duration of 720 hours (1 month). After testing, cross-sectional observations of non-broken specimens often reveal so-called “grooves” that can be significantly different in shape and depth depending on the test method, steel grade or environment considered.
Typical service lifetimes for protective coating systems range from 10-50 years, depending on how extreme the service environment is, as well as on all the details of substrate preparation, coating composition, and coating application.4 While the primary consideration for specifiers of protective coating systems is the service life related to corrosion protection, there is often also a requirement of durability of decorative properties, e.g. color and gloss. This is true not only for monumental steel structures, but also for instance for industrial and offshore structures where “safety colors” are used. This segment therefore has many similarities to the “architectural coatings” segment (coatings for monumental buildings), where the substrates may be different, but where a multi-layer system approach is still used, and owners expect the durability of both the protective and decorative functions.
Pulsed Eddy Current (PEC) technology is a widely accepted inspection method now covered by several industry standards such as ISO(1) 20669, API(2) RP 583, and the new ASME(3) Section V (BPVC for Boiler and Pressure Vessel Code), article 21. PEC is a versatile inspection technology which provides an average remaining wall thickness through insulation and coatings. The technique can also be used to safely assess the minimum remaining ligament under corrosion scabs or blisters without surface preparation. PEC is resilient to liftoff variations and provides volumetric measurements of remaining material. It is capable of both detecting and assessing general corrosion on the outer surface of the pipes such as scabs and blisters, and detecting erosion or Flow Accelerated Corrosion (FAC) on the inner surface.
Potash is mined from deep underground deposits left by ancient inland seas or extracted from saltwater bodies. The typical composition of potash is 40% potassium chloride (KCl), 55% sodium chloride (NaCl) and 5% clay. About 95% of potash is used for fertilizer in agriculture; the remaining 5% is used in commercial and industrial products such as soap, water softeners, de-icers, drilling muds etc.