Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
In oil and gas industry, during the transportation of wet gas with a stratified flow regime, the temperature difference between the fluid inside the pipelines and the surrounding environment leads to condensation of water on the upper internal surface and causes metal degradation. This phenomenon is known as Top-of-the-Line Corrosion or TLC.
The condensing phases can consist of not only water but also condensable hydrocarbons.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
CO2 captured from different sources for carbon capture and storage (CCS) will contain impurities. Although it is technologically possible to treat CO2 to near 100% purity in the gas conditioning process, it is preferable to have fewer rigid specifications to reduce both operational and capital costs. From a corrosion point of view, SOx, NOx, H2S, and O2 are considered to be the most aggressive impurities.
Buried steel pipelines operating in soil environments are constantly under threat from corrosion, a phenomenon which jeopardizes their structural integrity and escalates the risk of material degradation, leakage, and subsequent environmental hazards. A holistic understanding of the corrosion process in soil environments is essential for strengthening infrastructural resilience and upholding environmental sustainability.
Corrosion of metals in soils is dictated by a complex confluence of several factors, including aeration, pH, moisture content, ionic composition, electrical resistivity, and microbial activity1.
Hydrocarbons still remain as a fundamental contributor towards meeting the worldwide demand for energy, despite the growth of other alternative sources such as renewable and nuclear options. Due to low cost and availability, carbon steel, remains as the most commonly used material for pipelines in down and upstream activities within the oil and gas industry. However, carbon steel is not an exceptional metal alloy from the perspective of internal corrosion resistance. The economical cost for its degradation and related failures represent 10% to 30% of the maintenance budget in petroleum industry. It is therefore crucial that the corrosion of such a susceptible steel is managed and controlled accordingly.
Over the past decade, there has been increasing interest in the corrosion behavior of carbon steels in supercritical CO2 conditions. Unlike the case of carbon capture and storage (CCS) where small amounts of water are present, the exploitation of fields with high pressures of CO2 needs to consider the presence of formation water, which presents strong corrosivity. It has been reported that the aqueous corrosion rate of carbon steel at high CO2 pressures (liquid and supercritical CO2) without protective FeCO3 corrosion product layers is very high (>20 mm/y) due to the high concentrations of corrosive species such as H+ and H2CO3.1-5 Steels with low Cr contents (i.e., 1% Cr and 3% Cr) have shown no beneficial effect in terms of reducing the corrosion rate to admissible values.6 Therefore, controlling corrosion in these cases usually involves the use of corrosion resistant alloys (CRAs) or corrosion inhibitors (CI). Adequate protection of carbon steel was achieved by applying CI in high pressure CO2 environments.6
Esta norma conjunta da SSPC/NACE define o processo de preparação de uma superfície de aço-carbono ao grau de metal branco de limpeza superficial usando um método de jateamento abrasivo úmido (WAB) de limpeza. Esta norma destina-se ao uso por especificadores, aplicadores e inspetores de revestimentos ou outros cuja responsabilidade seja definir um grau padrão de limpeza superficial para superfícies de aço-carbono a ser alcançada por limpeza por jateamento abrasivo úmido.
A limpeza WAB é um processo que usa uma mistura de água e abrasivo que pode produzir diversos níveis de limpeza e perfil (aspereza) superficial similar aqueles obtidos por limpeza por jateamento abrasivo seco (DAB). A limpeza WAB pode ser especificada quando se deseja supressão de pó, e também pode ser um meio de reduzir a contaminação por sais solúveis. O nível de limpeza WAB especificado deve ser o mesmo que o grau de limpeza especificado correspondente para o processo de limpeza DAB.
Esta norma conjunta da SSPC/NACE define o processo de preparação de uma superfície de aço-carbono ao grau de metal quase-branco de limpeza superficial usando um método de jateamento abrasivo úmido (WAB) de limpeza. Esta norma destina-se ao uso por especificadores, aplicadores e inspetores de revestimentos ou outros cuja responsabilidade seja definir um grau padrão de limpeza superficial para superfícies de aço-carbono a ser alcançada por limpeza por jateamento abrasivo úmido.
This study focuses on a better understanding of pitting and crevice corrosion on coating surface damaged carbon steels in automotive applications. Immersion and cyclic polarization tests were conducted on bare and coated metals in a 5% NaCl solution.
Hydrofluoric acid (HF) is used as a catalyst in the alkylation process to react isobutane with olefin feeds to manufacture a high octane alkylate product used in gasoline blending. The HF catalyst is added in its anhydrous liquid form (< 400 ppmw H2O) but as it circulates in the reaction system, residual water in the Paper No. 17520 liquid hydrocarbon feed is absorbed by the acid such that the circulating reaction acid builds up a small percentage (0.5 to 2.0 mass%) of water. This water/HF mixture is also referred to as rich HF (RHF). In addition, the alkylation reactions also will generate fluorocarbons and acid soluble oils (ASOs).