Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
The techniques used to measure, design, and test Radar Absorbing Materials (RAM) are described. Absorbing additives are added to polymer materials at a range of concentrations in the laboratory, and then tested over the frequency range of interest to determine the material’s permittivity and permeability. The techniques and algorithms used to extract these values are dependent upon the material under test and the type of information required.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
This presentation will describe best practices for preparing a quality specification for applying protective coatings and linings to industrial structures. A well-prepared specification helps ensure that the contractor performs the work required in the allotted time. The presentation will focus on developing appropriate requirements for applying coatings and linings to obtain maximum system performance, service life, and protection of substrates in the prevailing service environment.
Protective coating systems provide the primary corrosion protection for assets in sea water. Protective coating systems are defined as a specific combination of surface preparation and coating material applied under specified conditions to a specific structure. Over the past many years, the paint industry has focused considerable resources toward the formulation, performance testing and fine tuning of coatings materials.
The 2014 US bridge inventory lists over 610,000 highway bridges. Industry experts believe that the cost of maintaining those bridges for repairs due to corrosion is at least $30 billion annually. Bridge owners do not have the resources to maintain bridges in good condition. New bridges are being constructed, at the rate of approximately 3,000 nationally each year. Those new bridges must not pose additional maintenance burdens on the already inadequate bridge maintenance budgets.
Coating performance and longevity is highly dependent on the quality of substrate surface preparation. The effect of profile height, profile type (e.g., type of tool used to perform the prep, angularity of profile, etc.), extent of cleanliness, and amount of chloride contamination on coating performance were all studied to determine the correlation between these factors in an attempt to identify the primary factor in coating failure due to improper surface preparation.
Epoxy coatings provide excellent physical barrier to the steel reinforcing bars that are embedded in reinforced concrete and prevent chloride ions from reaching the bar surface under corrosive environment. Such protection primarily depends on the integrity of the coatings, which can often be damaged during construction. Repair of epoxy coatings can be time consuming and expensive. Therefore, it is important to determine a critical amount of damage that can be tolerated without compromising the capacity of the coatings to provide corrosion protection.
The authors look toward the future of specifying coating projects starting with the traditional prescriptive, means-and-methods, coating formula-based specifications. The popular qualified product list (QPL) approach is presented along with its drawbacks. The design/build (DB) ideal and limitations of specifying only performance is presented.
Advanced technology high performance tank linings are often applied by plural spray equipment and occasionally one of the components could be off ratio. Worse still, some well-intentioned field personnel might add more curing agent to speed up the cure, or alter other properties, or may not utilize the entire curing agent portion in a single leg application. This paper investigates the effects of under-cure or over-cure on the performance of two high temperature tank linings by deliberately mis-mixing the two components.
In this paper, failure analysis methodology will be applied to the principal mechanisms by which FBE coatings fail during long term service; with specific application to case studies involving blistering. The case studies apply standard failure analysis techniques to determine the primary causes and modes of failures.
This paper will examine the different restrictions and indicators currently used to classify coatings as ‘Green”. It will also take a brief look at the Organizations and Governmental agencies that classify coatings as ‘Green”. The process of how to certify and the certifying organizations will be discussed. Finally, I will propose some guidelines to develop a universal global standard based upon existing commonality that would then have to be accepted by the global sanctioning bodies and users, while overcoming the bureaucratic hurdles and other obstacles and challenges in the way
The U.S. Army Corps of Engineers owns and operates the vast majority of the countries lock and dam structures for inland navigation. The large steel gates on these structures are subjected to a severe impact and abrasive environment while in immersion by debris such as timber, ice, steel drums, etc. High VOC vinyl resin coatings have historically been the best available coatings for these structures in this environment but have exhibited very poor performance at the water line where the impact and abrasion is at its worse.
Epoxy-based coating used in the ships and marine structures can be quickly degraded after only a short period of exterior exposure. The weathering defects such as discoloration, chalking and gloss reduction are originated from a photo-oxidation of aromatic group in the epoxy resin under the UV light. Weather resistance coatings such as polyurethane and polysiloxane require more work due to the short over-coating interval and low compatibility with primer coating layers.