Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
The goal of this research was to improve the understanding of the mechanisms of cathodic protection (CP) by determining the interactions between corrosion and local chemical parameters, such as pH, under varying CP conditions, both in the absence and presence of MIC.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
In the recent years, the reduction of the environmental footprint of industrial processes is gaining momentum, targeting the carbon neutrality. This also involves Aluminum industry, in which the use of secondary (e.g. recycled) alloys is a possible solution in order to decrease the greenhouse gases (GHG) emissions. Indeed, raw materials produced starting from secondary Aluminum show GHG emission values up to one order of magnitude lower with respect to their primary equivalents.
External corrosion of underground pipelines is being controlled by the use of latest technologies in protective coatings and by maintaining adequate levels of cathodic protection (CP). The role of the coating is to act as a physical and dielectric (non-conductive) barrier to isolate from the surrounding electrolyte and to limit the CP current requirement. The protective coating acts as the primary or first line of defense against corrosion; however no coating system is perfect and will subject to degradation with time, in addition to some voids/holidays during application, transport, and operations.
Measurement and interpretation of cathodic protection data in plant facilities present challenges where mixed metals are electrically continuous with the protected structure. This paper address some of the confusion and important aspects when using coupons for buried piping in mixed-metal circuits.
Steel sheet piles are widely used in permanent earth retaining and structural foundation works. In the majority of circumstances, they can be used in an unprotected condition, such conditions are when the steel piles does not required any coating or cathodic protection system to be protected and depends solely on the corrosion allowance calculations The degree of corrosion and whether protection is required depends upon the working environment - which can vary even within the same project location.
In general, marine environments are the most corrosive and unpredictable. In the few meters of vertical zoning which most structures encompass, parts of the sheet piles are in contact with soil, and exposed to seawater immersion, inter-tidal, splash and marine atmospheric environments.
As oil and gas operators ramp up their efforts to reduce their carbon footprint, more and more renewable energy projects will be constructed adjacent to pipeline infrastructure and facilities. This can compromise the corrosion protection systems designed to protect the existing pipeline infrastructure and can result in both AC and DC interference risks. There is very little literature related to the cathodic protection (CP) system impacts and interference risks of renewable energy projects on pipeline infrastructure, and how best to mitigate the risks.
In 2002 NACE International published a cost of corrosion study backed by the U. S. Federal Highway and Safety Administration estimating the annual cost of corrosion in the U. S. to be $276 billion. In the more detailed breakdown of these costs by industry/market segment the cost associated with the water and wastewater utilities segment in the “Utilities” category was estimated at $36 billion. The water and wastewater utilities segment represented the single largest cost segment in the study. The $36 billion estimate for this single segment of the Utilities category represented more cost than any of the other four categories: Transportation, Infrastructure, Government, and Manufacturing & Production.
Corrosion in Mooring systems for permanently moored floating production units has been identified as a problem area by authorities as well as industry. A Joint Industry Project (JIP) initiated by the Bureau of Safety and Environmental Enforcement (BSEE) with participation from major global oil and gas operators as well as equipment suppliers was established in 2014 to review the problem area. 1 Studies performed as a part of this program have shown that especially mooring chains located in tropical waters have shown signs of rapid corrosion, both general and localized with corrosion rates significantly larger than those specified in design standards. Increased corrosion allowance, as well as increased inspection requirements, have been recommended and corrosion has been reported as the leading cause for pre-emptive replacement of mooring.
The use of cathodic protection has become the preferred method for mitigating corrosion of steel reinforcement in concrete. A wide variety of both impressed current and sacrificial systems have been effectively used to control the effects of corrosion.
Organic coatings protect the underlying metallic substrate against corrosion by acting as a barrier to corrosive species such as water, ions, and oxygen. Unfortunately, coatings might contain defects and could degrade or disbond under some environmental conditions, resulting in favorable pathways for such corrosive species.
Barrier protection is one of the modes by which intact coatings provide protection to metal substrates through a reduction of the transport of materials, ions, or charge.
A helpful instruction for Cathodic Protection Testers, Technicians and Technologists who conduct tests on cathodic protection (CP) systems for on-shore structures. Tools. Equipment. Safety. Analysis. References. 3rd edition 2016 NACE