Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
Impressed current rectifiers are the backbone of a pipeline operator’s cathodic protection (CP) systems. A rectifier’s ability to protect a large length of electrically continuous pipeline considerably improves efficiencies and reduces material costs as compared to galvanic systems. However, like galvanic anodes, impressed current anodes are a consumable asset, and require replacement at the end of their service life to ensure that the rectifier can continue to adequately protect the pipeline.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Back in 1991 the first offshore wind asset was constructed in Denmark near the coastline from Vindeby (which means windy city). This asset comprised 11 foundations with a capacity of 0.36 MW each. Since then; the offshore wind industry has been booming, and projects are becoming bigger and bigger in size (capacity), number of foundations per site and further and further offshore.
RARELY SEEN RESEARCH: Bridges: A Look Back—Historic Studies in Cathodic Protection: The 1990s, is a companion book to Bridges: A Look Back—Case Studies in Cathodic Protection: Substructures and Bridges: A Look Back—Case Studies in Cathodic Protection: Superstructures, both of which consist of nearly 30 years of curated legacy NACE technical papers and journal articles that cover exactly what the titles suggest.
This book consists of edited case histories, while the two original titles are compiled of the original, unabridged technical papers and journal articles.
2023 AMPP, 6 x 9 trim size, 52 pages, color
In the oil and gas industry, thermally sprayed aluminum (TSA) coatings are commonly used, primarily, to reduce anode demand in cathodic protection systems and impart some degree of sacrificial protection in the topsides and splash zone areas. The use of TSA coatings has advantages in systems where long service life is required. TSA coatings are also used to reduce the formation of calcareous deposits, normally a combination of CaCO3 and Mg(OH)2, on heat exchanger piping.
In this paper, a preliminary study of the effect of intermittent CP has been carried out in order to investigate the effect of a temporary current interruption on the potential monitoring and on the residual corrosion of the metal.
In 2000 the National Science Foundation estimated that the market for nanotechnology products will be over one trillion US dollars by 2015 and that the industry would employ over 200 million workers. These numbers have been subsequently quoted from funding applications to government policy documents, but at the halfway point many of the revolutionary and disruptive technologies predicted have failed to emerge. Indeed, seven years on from the inception of the National Nanotechnology Initiative, there appears to be little sign of a nanotechnology-based industry, although significant amounts of R&D are being undertaken by various industries.