Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Sulfur and acidic impurities in crude oils pose serious hot oil corrosion problems in crude distillation units (CDU) and associated vacuum distillation units (VDU), especially with the increase in processing of lowquality, opportunity crudes.1-4 In the range of 200-400˚C, reactive sulfur compounds cause sulfidation corrosion of ferritic carbon and chrome steels in CDU, VDU, and front ends of downstream units operating at hot oil temperatures.5-7 Over the same temperature range, naturally occurring carboxylic acids in crudes can be so aggressive that higher alloy, austenitic stainless steels containing >2.5% Mo are required for processing high acid oils.8-11 Although sulfidation and acid corrosion occur over the same temperature range, they differ in two significant ways. Sulfidation forms an iron sulfide solid that is semiresistant to further corrosion and relatively insensitive to flow velocity. Acids form oil soluble organic salts that can be washed away especially in areas of high turbulence.12-14
Slurry pipeline systems are used for the extraction of bitumen from mined ore in the oil sands industry in Alberta, Canada. Most of these extraction processes are open to atmosphere resulting in significant air ingress and entrainment within the slurry pipelines used to transport mined ore and tailings. In addition, for short hydrotransport slurry pipelines, the slurry is conditioned by air to create bubbles coated with a bitumen film called “air-sacks”.
With growing concern for global warming resulting from fossil fuel usage, the use of nuclear energy has provided a cleaner alternative to power generation. Radioactive fuel such as Uranium Oxide has gained significant usage today. Almost 20% of the electricity generated in the US comes from nuclear energy.
H2S corrosion mechanisms, specifically at high partial pressures of H2S (pH2S), have not been extensively studied because of experimental difficulties and associated safety issues. The current study was conducted under well-controlled conditions at pH2S of 0.05 and 0.096 MPa.
A top-of-line corrosion (TLC) model integrated into a CO2/H2S corrosion prediction model. The TLC model determines the top of the line corrosion rate of carbon steel based on water chemistry and film-wise condensation rate. The effect of various glycols, such as Monoethylene Glycol, Diethylene glycol and Triethylene Glycol, are included.
Human safety is at the forefront of industrial concerns, with manufacturers needing to comply with multiple standards globally and regionally. One such concern is ensuring that those working in close contact with surfaces of elevated temperature are protected against injury and burns. You will find that many will reference the fact that the U.S. Occupational Safety and Health Administration (OSHA) has set a limit of safe temperature for skin contact at 140°F (60°C) and state that these limits were set since no damage would occur during five seconds of exposure.
In Upstream, CRAs (Corrosion Resistant Alloys) are widely selected to handle seawater and brines in piping, valves, pumps, heat exchangers, vessels, and seawater injection1-4. Also, disposal of produced water is commonly performed through injection into spent fields. Water from a variety of sources including produced water, seawater and surface/fresh water may also be injected to create pressure drive for existing fields. Usually dissolved oxygen (DO) is not fully controlled when there are multiple sources of injection water and sometimes even possibility of injection of fully oxygenated water exists. For oxygenated seawater, the PREN (Pitting Resistance Equivalent Number = %Cr + 3.3 *(%Mo + 0.5 %W) + 16 %N) shall be >40 and limits are applied to the temperature4. Other applications involve Solid CRA or cladded production pipelines which may get flooded with seawater during installation and precommissioning.
Sulfur and acidic impurities in crude oils pose serious hot oil corrosion problems in crude distillation units (CDU) and associated vacuum distillation units (VDU), especially with the increase in processing of lowquality, opportunity crudes. In the range of 200-400˚C, reactive sulfur compounds cause sulfidation corrosion of ferritic carbon and chrome steels in CDU, VDU, and front ends of downstream units operating at hot oil temperatures. Over the same temperature range, naturally occurring carboxylic acids in crudes can be so aggressive that higher alloy, austenitic stainless steels containing >2.5% Mo are required for processing high acid oils.
Enbridge is proposing to develop a program that utilizes state-of-the-art technologies and proven inspection methods to prescribe interventions related to external corrosion mitigation using a predictive, integrated approach. This new program embraces complex problems by collecting, analyzing, and integrating environmental, pipeline integrity, and corrosion control data to predict external corrosion risk with sound engineering models (mechanistic, reliability and risk) to anticipate, prevent, and contain unexpected events.